Skip to main content

Advertisement

Log in

Synergistic Effect of Metal Chloride for the Generation of HMF From Cellulose

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The conversion of biomass energy sources is a crucial direction in the transformation of energy resources, such as cellulose to high-value chemicals. As an important platform compound, 5-hydroxymethylfurfural (HMF) is one of the worthwhile products from biomass. Previously, the use of Hf/ZSM-5 catalyst demonstrated excellent catalytic performance, with the yield of HMF reaching 67.50% under optimal reaction conditions (120 min, 190 °C, H2O(NaCl)/THF). Based on the previous work, the effect of a series of metal salts on the preparation of HMF from cellulose catalyzed by Hf/ZSM-5 catalyst was investigated in this paper. This result demonstrates the addition of AlCl3 promoted the production of HMF yield and AlCl3 completed with excellent performance among five metal salts. Moreover, the yield of HMF was improved to 70.95% by adjusting the optimal reaction conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang S, Dai J, Su M (2012) Material flow analysis of fossil fuels in China during 2000–2010. Sci World J 2012:1–8

    Google Scholar 

  2. Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A (2011) Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem Soc Rev 40(11):5266–5281

    Article  PubMed  CAS  Google Scholar 

  3. Dessie W, Luo X, Wang M, Feng L, Liao Y, Wang Z et al (2020) Current advances on waste biomass transformation into value-added products. Appl Microbiol Biotechnol 104(11):4757–4770

    Article  PubMed  CAS  Google Scholar 

  4. Tong X, Ma Y, Li Y (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal A: Gen 385(1–2):1–13

    Article  CAS  Google Scholar 

  5. Dijkman WP, Groothuis DE, Fraaije MW (2014) Enzyme-catalyzed oxidation of 5-Hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew Chem Int Ed 53(25):6515–6518

    Article  CAS  Google Scholar 

  6. Su T, Zhao D, Wang Y, Lü H, Varma RS, Len C (2021) Innovative protocols in the catalytic oxidation of 5-hydroxymethylfurfural. Chemsuschem 14(1):266–280

    Article  PubMed  CAS  Google Scholar 

  7. Zhao D, Su T, Wang Y, Varma RS, Len C (2020) Recent advances in catalytic oxidation of 5-hydroxymethylfurfural. Mol Catal 495:111133

    Article  CAS  Google Scholar 

  8. Wang L, Zuo J, Zhang Q, Peng F, Chen S, Liu Z (2022) Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-dihydroxymethylfuran over Co/UiO-66-NH2. Catal Lett 152(2):361–371

    Article  CAS  Google Scholar 

  9. Kwon Y, Birdja YY, Raoufmoghaddam S, Koper MTM (2015) Electrocatalytic hydrogenation of 5-Hydroxymethylfurfural in acidic solution. Chemsuschem 8(10):1745–1751

    Article  PubMed  CAS  Google Scholar 

  10. Arias KS, Climent MJ, Corma A, Iborra S (2016) Chemicals from biomass: synthesis of biologically active furanochalcones by Claisen-Schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones. Top Catal 59(13–14):1257–1265

    Article  CAS  Google Scholar 

  11. Lolli A, Albonetti S, Utili L, Amadori R, Ospitali F, Lucarelli C et al (2015) Insights into the reaction mechanism for 5-hydroxymethylfurfural oxidation to FDCA on bimetallic Pd–Au nanoparticles. Appl Catal A 504:408–419

    Article  CAS  Google Scholar 

  12. Subbiah S, Simeonov SP, Esperança JMSS, Rebelo LPN, Afonso CAM (2013) Direct transformation of 5-hydroxymethylfurfural to the building blocks 2,5-dihydroxymethylfurfural (DHMF) and 5-hydroxymethyl furanoic acid (HMFA) via Cannizzaro reaction. Green Chem 15(10):2849

    Article  CAS  Google Scholar 

  13. Kowalski S, Lukasiewicz M, Duda-Chodak A, Zięć G (2013) 5-Hydroxymethyl-2-furfural (HMF)–heat-induced formation, occurrence in food and biotransformation - a review. Polish J Food Nutr Sci 63(4):207–225

    Article  CAS  Google Scholar 

  14. Tang Z, Su J (2019) Direct conversion of cellulose to 5-hydroxymethylfurfural (HMF) using an efficient and inexpensive boehmite catalyst. Carbohyd Res 481:52–59

    Article  CAS  Google Scholar 

  15. Muqeet M, Mahar RB, Gadhi TA, Ben HN (2020) Insight into cellulose-based-nanomaterials - a pursuit of environmental remedies. Int J Biol Macromol 163:1480–1486

    Article  PubMed  CAS  Google Scholar 

  16. Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316(5831):1597–1600

    Article  PubMed  CAS  Google Scholar 

  17. Román-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312(5782):1933–1937

    Article  PubMed  Google Scholar 

  18. Yan L, Laskar DD, Lee S, Yang B (2013) Aqueous phase catalytic conversion of agarose to 5-hydroxymethylfurfural by metal chlorides. RSC Adv 3(46):24090–24098

    Article  CAS  Google Scholar 

  19. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131(5):1979–1985

    Article  PubMed  CAS  Google Scholar 

  20. De S, Dutta S, Saha B (2011) Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethylfurfural with aluminium chloride catalyst in water. Green Chem 13(10):2859

    Article  CAS  Google Scholar 

  21. Wu N, Zhang M, Pan X, Zhang J, Gao L, Xiao G (2021) An effective and inexpensive Hf/ZSM-5 catalyst for efficient hmf formation from cellulose. Catal Lett 151(7):1984–1992

    Article  CAS  Google Scholar 

  22. Gomes GR, Rampon DS, Ramos LP (2018) Production of furan compounds from sugarcane bagasse using a catalytic system containing ZnCl2/HCl or AlCl3/HCl in a biphasic system. J Brazilian Chem Soc 29(5):1115–1122

    CAS  Google Scholar 

  23. Wang T, Glasper JA, Shanks BH (2015) Kinetics of glucose dehydration catalyzed by homogeneous lewis acidic metal salts in water. Appl Catal A 498:214–221

    Article  CAS  Google Scholar 

  24. Fringuelli F, Pizzo F, Vaccaro L (2001) AlCl3 as an efficient lewis acid catalyst in water. Tetrahedron Lett 42(6):1131–1133

    Article  CAS  Google Scholar 

  25. Deng T, Cui X, Qi Y, Wang Y, Hou X, Zhu Y (2012) Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl2 in water. Chem Commun 48(44):5494

    Article  CAS  Google Scholar 

  26. Yang Y, Hu C, Abu-Omar MM (2012) Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system. Green Chem 14(2):509–513

    Article  Google Scholar 

  27. Tsilomelekis G, Orella MJ, Lin ZX, Cheng ZW, Zheng WQ, Nikolakis V et al (2016) Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins. Green Chem 18(7):1983–1993

    Article  CAS  Google Scholar 

  28. Patil SKR, Heltzel J, Lund CRF (2012) Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy Fuel 26(8):5281–5293

    Article  CAS  Google Scholar 

  29. Aid T, Koel M, Lopp M, Vaher M (2018) Metal-catalyzed degradation of cellulose in ionic liquid media. Inorganics 6(3):78

    Article  Google Scholar 

  30. Yan L, Ma R, Wei H, Li L, Zou B, Xu Y (2019) Ruthenium trichloride catalyzed conversion of cellulose into 5-hydroxymethylfurfural in biphasic system. Biores Technol 279:84–91

    Article  CAS  Google Scholar 

  31. Liu B, Zhang Z, Zhao ZK (2013) Microwave-assisted catalytic conversion of cellulose into 5-hydroxymethylfurfural in ionic liquids. Chem Eng J 215–216:517–521

    Article  Google Scholar 

  32. Fang XW, Wang Z, Song WL, Li SG, Lin WG (2019) Preparation of furans from catalytic conversion of corn stover in H2O-THF co-solvent system - the effects of acids combined with alkali metal cations. J Taiwan Inst Chem Eng 97:105–111

    Article  CAS  Google Scholar 

  33. Nandiwale KY, Galande ND, Thakur P, Sawant SD, Zambre VP, Bokade VV (2014) One-pot synthesis of 5-hydroxymethylfurfural by cellulose hydrolysis over highly active bimodal micro/mesoporous H-ZSM-5 catalyst. ACS Sustain Chem Eng 2(7):1928–1932

    Article  CAS  Google Scholar 

  34. Sezgin E, Esen Keçeci M, Akmaz S, Koc SN (2019) Heterogeneous Cr-zeolites (USY and Beta) for the conversion of glucose and cellulose to 5-hydroxymethylfurfural (HMF). Cellulose 26(17):9035–9043

    Article  CAS  Google Scholar 

  35. Wu M, Huang M, Chen L, Ma Q, Zhou J (2020) Direct conversion of cellulose to 5-hydroxymethylfurfural over SnNb2O6–ZrO2 catalyst. React Kinet Mech Catal 130(2):903–918

    Article  CAS  Google Scholar 

  36. Pham ST, Nguyen MB, Le GH, Pham TTT, Quan TTT, Nguyen TD et al (2019) Cellulose conversion to 5 Hydroxymethyl Furfural (5-HMF) using Al-incorporated SBA-15 as highly efficient catalyst. J Chem 2019:1–8

    Google Scholar 

  37. Zhao J, Zhang Y, Wang K, Yan C, Da Z, Li C et al (2018) Development of hierarchical porous MOF-based catalyst of UiO-66(Hf) and its application for 5-hydroxymethylfurfural production from cellulose. ChemistrySelect 3(41):11476–11485

    Article  CAS  Google Scholar 

  38. Yedla SK, Velaga B, Choudhury S, Namdeo A, Golder AK, Peela NR (2020) 1-Butyl-3-methylimidazolium bromide functionalized zeolites: nature of interactions and catalytic activity for carbohydrate conversion to platform chemicals. React Chem Eng 5(9):1738–1750

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2019YFB1504003)

Funding

The National Key R & D Program of China, Grant No. 2019YFB1504003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest or personal relationships that may affect the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Pan, X., Wu, N. et al. Synergistic Effect of Metal Chloride for the Generation of HMF From Cellulose. Catal Lett 154, 674–684 (2024). https://doi.org/10.1007/s10562-023-04320-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04320-3

Keywords

Navigation