Skip to main content
Log in

Hydrothermal Synthesis of Monoclinic CrVO4 Nanoparticles and Catalytic Ammoxidation of 2-chlorotoluene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Vanadium-chromium composite oxides have held much interest due to their distinctive catalytic properties, which depend on their morphology and crystal structure. During the hydrothermal synthesis, reducing agents play an important role in controlling the morphology and the crystal structure of vanadium-chromium oxides. In this work, nanocrystalline chromium vanadate (CrVO4) were prepared by a simple one-pot hydrothermal method based on the reaction between V2O5 and CrO3. Three different CrVO4 crystal structures, including orthorhombic CrVO4, monoclinic CrVO4, and mixed-phased-CrVO4 were obtained by using different reducing agents. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies revealed that nanocrystalline monoclinic CrVO4 was obtained using tartaric acid as the reducing agent. Catalytic properties of nanostructured CrVO4 were investigated for the vapor phase ammoxidation of 2-chlorotoluene to 2-chlorobenzonitrile. The monoclinic CrVO4 nanostructures exhibited excellent catalytic performance due to the proper distribution of V-O-Cr bond. It was one of the most efficient binary catalysts for such vapor phase ammoxidation processes to the best of our knowledge, and may have great potential for the ammoxidation of halogen-substituted toluenes.

Graphical Abstract

Monoclinic CrVO4 nanostructures are controllably prepared by hydrothermal process using tartaric acid as reductant and exhibit excellent catalytic performance for ammoxidation of 2-chlorotoluene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xie G, Huang C (2007) Indian J Chem Technol 14:371–375

    CAS  Google Scholar 

  2. Kalevaru VN, Lucke B, Martin A (2009) Catal Today 142:158–164

    Article  CAS  Google Scholar 

  3. Krishnan V, Raju T, Muthukumaran A, Kulangiappar K (2009) Indian Pat 230374

  4. Martin A, Kalevaru NV (2010) ChemCatChem 2:1504–1522

    Article  CAS  Google Scholar 

  5. Martin A, Kalevaru NV, Lücke B, J. Sans (2002) Green Chem 4: 481–485

  6. Dropka N, Kalevaru NV, Martin A, Linke D, Lücke B (2006) J Catal 240:8–17

    Article  CAS  Google Scholar 

  7. Goto Y, Shimizu K, Kon K, Toyao T, Murayama T, Ueda W (2016) J Catal 344:346–353

    Article  CAS  Google Scholar 

  8. Kubo J, Watanabe N, Ueda W (2008) Chem Eng Sci 63:1648–1653

    Article  CAS  Google Scholar 

  9. Chieregato A, López Nieto JM, Cavani F (2015) Coord Chem Rev 301–302:3–23

    Article  Google Scholar 

  10. Tang W, Liu Y, Ding S, Dong Y, Li T, Xie G (2022) Res Chem Intermed 48:4105–4118

    Article  CAS  Google Scholar 

  11. Li X, Hu H, Chen P, Chen F, Yang S (2021) Mol Catal 516:111995

    Article  CAS  Google Scholar 

  12. Xu L, Zhang Y, Deng Y, Zhong S, Mo YZ, Cheng G, Huang C (2013) Mater Res Bull 48:3620–3624

    Article  CAS  Google Scholar 

  13. Dong Y, Li T, You X, You Q, Sun L, Xie G (2022) Res Chem Intermed 48:1151–1158

    Article  CAS  Google Scholar 

  14. Xie G, Zhang A (2012) Synth Commun 42:375–379

    Article  CAS  Google Scholar 

  15. Xie G, Zhang A, Huang C (2010) Res Chem Intermed 36:969–973

    Article  CAS  Google Scholar 

  16. Touboul M, Melgite K (1995) J Mater Chem 5:147–150

    Article  CAS  Google Scholar 

  17. Shishido T (2011) J Jpn Petrol Inst 54:225–236

    Article  CAS  Google Scholar 

  18. Tang W, Zheng H, Dong Y, You Q, Li T, Xie G (2022) Mol Catal 518:112062

    Article  CAS  Google Scholar 

  19. Baran EJ (1998) J Mater Sci 33:2479–2497

    Article  CAS  Google Scholar 

  20. Bera G, Reddy VR, Rambabu P, Mal P, Das P, Mohapatra N, Padmaja G, Turpu GR (2017) J Appl Phys 122:115101

    Article  Google Scholar 

  21. Jiang F, Deng S, Niu L, Xiao G (2013) Chin J Catal 34:1833–1838

    Article  CAS  Google Scholar 

  22. Dhachapally N, Kalevaru VN, Radni J, Martin A (2011) Chem Commun 47:8394–8396

    Article  CAS  Google Scholar 

  23. Huang Y, Li T, You Q, You X, Zhang Q, Zhang D, Xie G (2018) Chin J Catal 39:1814–1820

    Article  CAS  Google Scholar 

  24. Song Z, Matsushita T, Shishido T, Takehira K (2003) J Catal 218:32–41

    Article  CAS  Google Scholar 

  25. Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS (2022) Chem Rev 122:12748–12863

    Article  PubMed  CAS  Google Scholar 

  26. Chithambararaj A, Yogamalar NR, Bose AC (2016) Cryst Growth Des 16:1984–1995

    Article  CAS  Google Scholar 

  27. Tan L, Wang F, Zhang P, Suzuki Y, Wu Y, Chen J, Yan G, Tsubaki N (2020) Chem Sci 11:4097–4105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Vidruk R, Landau MV, Herskowitz M, Ezersky V, Goldbourt A (2011) J Catal 282:215–227

    Article  CAS  Google Scholar 

  29. Shishido T, Song Z, Kadowaki E, Wang Y, Takehira K (2003) Appl Catal A 239:287–296

    Article  CAS  Google Scholar 

  30. Touboul M, Denis S, Seguin D (1995) Eur J Solid State Inorg Chem 32:577

    CAS  Google Scholar 

  31. Isasi MJ, Sáez-Puche R, Veiga ML, Pico C, Jerez A (1988) Mater Res Bull 23:595–601

    Article  CAS  Google Scholar 

  32. Martin A, Lücke B, Wolf G, Meisel M (1995) Catal Lett 33:349–355

    Article  CAS  Google Scholar 

  33. Babu BH, Rao V, Suh YW, Sai Prasad PS, Lingaiah N (2018) New J Chem 42:1892–1901

    Article  Google Scholar 

  34. Dwivedi R, Sharma P, Sisodiya A, Batra MS, Prasad R (2017) J Catal 345:245–257

    Article  CAS  Google Scholar 

  35. Rajitha P, Kumar PM, Mallesh D, Lingaiah N (2021) Mol Catal 515:111885

    Article  CAS  Google Scholar 

  36. Babu BH, Venkateswar Rao KT, Surendar M, Sai Prasad PS, Lingaiah N (2015) React Kinet Mech Cat 114:121–134

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21172269), by “the Fundamental Research Funds for the Central Universities”, South-Central MinZu University (CZY22010), by “the Major bidding projects of provincial and ministerial scientific institutions”, South-Central Minzu University (PTZD22007), and by “the Opening Project of Key Laboratory of Optolectronic Chemical Materials and Devices of Minstry of Education”, Jianghan Univeristy (JDGD-202220).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanjun Tang or Guangyong Xie.

Ethics declarations

Conflict of interest

There is no conflict of interest for each contributing author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhao, D., Tang, W. et al. Hydrothermal Synthesis of Monoclinic CrVO4 Nanoparticles and Catalytic Ammoxidation of 2-chlorotoluene. Catal Lett 154, 524–531 (2024). https://doi.org/10.1007/s10562-023-04305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04305-2

Keywords

Navigation