Skip to main content
Log in

Effects of Promoters on the Physicochemical Properties of Cobalt-Iron Catalysts Supported on Multiwalled-Carbon Nanotubes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cobalt-iron bimetallic catalysts promoted with Nb, Ru or Rh and supported on multiwalled-carbon nanotubes (MWCNTs) were synthesized using a reverse-microemulsion method. The synthesized catalysts were characterized by TEM, N2-physical adsorption, XPS, XRD, and TPD/R/O methods. XPS analyses showed an increasing trend of the Co2+/Co3+ atomic ratios for the promoted catalysts, compared to that of the un-promoted Co–Fe/CNTs catalyst. The dispersion for the un-promoted Co–Fe /CNTs catalyst was 15.9% and it increased to 23.0, 20.4, and 17.7% in the presence of 0.1 wt.% Nb, Ru, and Rh promoter, respectively. The addition of Nb-promoter also improved the reducibility of the catalyst as exhibited by the H2-TPR study. The presence of Nb, Ru, and Rh promoters improved the catalytic performance in a Fischer–Tropsch synthesis where the TOF over the un-promoted catalyst increased from 5.1 to 6.2, 5.7, 5.2 × 10–1 s−1 upon the addition of Nb, Ru and Rh promoter, respectively. Thus, the Nb promoter was a better promoter than Ru and Rh for the Co–Fe/CNTs catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akbarzadeh O, Alshahateet SF, Mohd Zabidi NA, Moosavi S, Kordijazi A, Babadi AA, Sagadevan S (2021) Effect of temperature, syngas space velocity and catalyst stability of Co-Mn/CNT bimetallic catalyst on Fischer Tropsch synthesis performance. Catalysts 11:846. https://doi.org/10.3390/catal11070846

    Article  CAS  Google Scholar 

  2. Teimouri Z, Abatzoglou N, Dalai AK (2021) Kinetics and selectivity study of Fischer-Tropsch synthesis to C5+ hydrocarbons: A review. Catalysts 11:330. https://doi.org/10.3390/catal11030330

    Article  CAS  Google Scholar 

  3. Shafer WD, Gnanamani MK, Graham UM, Yang J, Masuku CM, Jacobs G, Davis BH (2019) Fischer-tropsch: Product selectivity-the fingerprint of synthetic fuels. Catalysts 9:259. https://doi.org/10.3390/catal9030259

    Article  CAS  Google Scholar 

  4. Zhu C, Liu Y, Huo C, Liu H (2018) Enhancing the light olefin selectivity of an iron-based Fischer-Tropsch synthesis catalyst by modification with CTAB. RSC Adv 8:32073–32083. https://doi.org/10.1039/c8ra04622k

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Adeleke AA, Liu X, Lu X, Moyo M, Hildebrandt D (2020) Cobalt hybrid catalysts in Fischer-Tropsch synthesis. Rev Chem Eng 36:437–457. https://doi.org/10.1515/revce-2018-0012

    Article  CAS  Google Scholar 

  6. Jeske K, Kizilkaya AC, López-Luque I, Pfänder N, Bartsch M, Concepción P, Prieto G (2021) Design of cobalt Fischer-Tropsch catalysts for the combined production of liquid fuels and olefin chemicals from hydrogen-rich syngas. ACS Catal 11:4784–4798. https://doi.org/10.1021/acscatal.0c05027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Tavasoli A, Trépanier M, Malek Abbaslou RM, Dalai AK, Abatzoglou N (2009) Fischer-Tropsch synthesis on mono- and bimetallic Co and Fe catalysts supported on carbon nanotubes. Fuel Process Technol 90:1486–1494. https://doi.org/10.1016/j.fuproc.2009.07.007

    Article  CAS  Google Scholar 

  8. Ali S, Mohd Zabidi NA, Subbarao D (2011) Correlation between Fischer-Tropsch catalytic activity and composition of catalysts. Chem Cent J 5:68. https://doi.org/10.1186/1752-153X-5-68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gholami Z, Zabidi NAM, Gholami F, Vakili M (2016) Synthesis and characterization of niobium-promoted cobalt/iron catalysts supported on carbon nanotubes for the hydrogenation of carbon monoxide. J Fuel Chem Technol 44:815–821. https://doi.org/10.1016/S1872-5813(16)30036-6

    Article  CAS  Google Scholar 

  10. Díaz JA, Romero A, García-Minguillán AM, Giroir-Fendler A, Valverde JL (2014) Carbon nanofibers and nanospheres-supported bimetallic (Co and Fe) catalysts for the Fischer-Tropsch synthesis. Fuel Process Technol 138:455–462. https://doi.org/10.1016/j.fuproc.2015.06.020

    Article  CAS  Google Scholar 

  11. Griboval-constant A, Butel A, Ordomsky VV, Chernavskii PA, Khodakov AY (2014) Cobalt and iron species in alumina supported bimetallic catalysts for Fischer-Tropsch reaction. Appl Catal A 481:116–126. https://doi.org/10.1016/j.apcata.2014.04.047

    Article  CAS  Google Scholar 

  12. Liu J, Wang P, Xu W, Hensen EJM (2017) Particle size and crystal phase effects in Fischer_Tropsch catalysts. Engineering 3:467–476. https://doi.org/10.1016/J.ENG.2017.04.012

    Article  Google Scholar 

  13. Valero-Romero MJ, Rodríguez-Cano MÁ, Palomo J, Rodríguez-Mirasol J, Cordero T (2021) Carbon-based materials as catalyst supports for fischer-tropsch synthesis: a review. Front Materials 7:617432. https://doi.org/10.3389/fmats.2020.617432

    Article  Google Scholar 

  14. Alayat A, Echeverria E, Mcllroy DN, Mcdonald AG (2018) Enhancement of the catalytic performance of silica nanosprings (NS)-supported iron catalyst with copper, molybdenum, cobalt, and ruthenium promoters for Fischer-Tropsch synthesis. Fuel Process Technol 177:89–100. https://doi.org/10.1016/j.fuproc.2018.04.020

    Article  CAS  Google Scholar 

  15. Intarasiri S, Ratana T, Sornchamni T, Phongaksorn M, Tungkamani S (2017) Effect of pore size diameter of cobalt supported catalyst on gasoline-diesel selectivity. Energy Procedia 138:1035–1040. https://doi.org/10.1016/j.egypro.2017.10.090

    Article  CAS  Google Scholar 

  16. Eslava JL, Iglesias-juez A, Fernández-garcía M, Guerrero-ruiz A, Rodríguez-ramos I (2018) Effect of different promoter precursors in a model Ru-Cs/graphite system on the catalytic selectivity for Fischer-Tropsch reaction. Appl Surf Sci 447:307–314. https://doi.org/10.1016/j.apsusc.2018.03.207

    Article  CAS  Google Scholar 

  17. Al-Zuhairi FK, Kadhim WA, Khalaf AL, Rahim MHA (2020) The effects of cerium promoter on the performance of cobalt-based catalysts in Fischer Tropsch synthesis for liquid fuel production. IIUM Eng J 21:1–11. https://doi.org/10.31436/iiumej.v21i2.1150

    Article  Google Scholar 

  18. Gorimbo J, Muleja A, Liu X, Hildebrandt D (2018) Fischer-Tropsch synthesis: product distribution, operating conditions, iron catalyst deactivation and catalyst speciation. Int J Ind Chem 9:317–333. https://doi.org/10.1007/s40090-018-0161-4

    Article  CAS  Google Scholar 

  19. Riyahin M, Atashi H, Mohebbi-Kalhori D (2016) Effect of process conditions on Fischer-Tropsch synthesis product selectivity over an industrial iron-based catalyst in slurry reactor. Pet Sci Technol 34:1211–1218. https://doi.org/10.1080/10916466.2016.1193521

    Article  CAS  Google Scholar 

  20. Horáček J (2020) Fischer-Tropsch synthesis, the effect of promoters, catalyst support, and reaction conditions selection. Monatshefte fur Chemie 151:649–675. https://doi.org/10.1007/s00706-020-02590-w

    Article  CAS  Google Scholar 

  21. Akbarzadeh O, Asmawati N, Zabidi M, Wahab YA, Hamizi NA, Chowdhury ZZ, Merican ZMA (2018) Effects of cobalt loading, particle size, and calcination condition on Co/CNT catalyst performance in Fischer-Tropsch Reactions. Symmetry 11:7. https://doi.org/10.3390/sym11010007

    Article  CAS  Google Scholar 

  22. Gholami Z, Zabidi NAM, Gholami F, Ayodele OB, Vakili M (2017) The influence of catalyst factors for sustainable production of hydrocarbons via Fischer-Tropsch synthesis. Rev Chem Eng 33:337–358. https://doi.org/10.1515/revce-2016-0009

    Article  CAS  Google Scholar 

  23. Afandi NS, Khavarian M, Mohamed AR (2019) Effect of synthesis condition on the structural features of Ni-Ce bimetallic catalysts supported on functionalized multi-walled carbon nanotubes. Sains Malaysiana 48(6):1209–1219. https://doi.org/10.17576/jsm-2019-4806-08

    Article  CAS  Google Scholar 

  24. Zhang Z, Zhang J, Wang X, Si R, Xu J, Han Y (2018) Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer-Tropsch to olefins. J Catal 365:71–85. https://doi.org/10.1016/j.jcat.2018.05.021

    Article  CAS  Google Scholar 

  25. Akbarzadeh O, Zabidi NAM, Wahab A, Hamizi NA, Chowdhury ZZ, Merican ZMA (2018) Effect of cobalt catalyst confinement in carbon synthesis performance. Symmetry 10:572. https://doi.org/10.3390/sym10110572

    Article  CAS  Google Scholar 

  26. Ghogia AC, Cayez S, Machado BF, Nzihou A, Serp P, Soulantica K, Minh DP (2020) Hydrogen spillover in the Fischer-Tropsch synthesis on carbon-supported cobalt catalysts. ChemCatChem 12:1117–1128. https://doi.org/10.1002/cctc.201901934

    Article  CAS  Google Scholar 

  27. Oh JH, Bae JW, Park SJ, Khanna PK, Jun KW (2009) Slurry-phase Fischer-Tropsch synthesis using Co/γ-Al2O3, Co/SiO2 and Co/TiO2: effect of support on catalyst aggregation. Catal Lett 130:403–409. https://doi.org/10.1007/s10562-009-0021-0

    Article  CAS  Google Scholar 

  28. Eschemann TO, Oenema J, De Jong KP (2016) Effects of noble metal promotion for Co/TiO2 Fischer-Tropsch catalysts. Catal Today 261:60–66. https://doi.org/10.1016/j.cattod.2015.06.016

    Article  CAS  Google Scholar 

  29. Shariati J, Haghtalab A, Mosayebi A (2019) Fischer – Tropsch synthesis using Co and Co-Ru bifunctional nanocatalyst supported on carbon nanotube prepared via chemical reduction method. J Energy Chem 28:9–22. https://doi.org/10.1016/j.jechem.2017.10.001

    Article  Google Scholar 

  30. Luo QX, Guo LP, Yao SY, Bao J, Liu ZT, Liu ZW (2019) Cobalt nanoparticles confined in carbon matrix for probing the size dependence in Fischer-Tropsch synthesis. J Catal 369:143–156. https://doi.org/10.1016/j.jcat.2018.11.002

    Article  CAS  Google Scholar 

  31. Akbari M, Mirzaei AA, Arsalanfar M (2020) Microemulsion based synthesis of promoted Fe–Co/MgO nanocatalyst: Influence of calcination atmosphere on the physicochemical properties, activity, and light olefins selectivity for hydrogenation of carbon monoxide. Mater Chem Phys 249:123003. https://doi.org/10.1016/j.matchemphys.2020.123003

    Article  CAS  Google Scholar 

  32. Pour AN, Housaindokht M (2019) Effects of metallic cobalt crystal phase on catalytic activity of cobalt catalysts supported on carbon nanotubes in Fischer-Tropsch synthesis. Prog React Kinet Mech 44:316–323. https://doi.org/10.1177/1468678319862438

    Article  CAS  Google Scholar 

  33. Chen W, Fan Z, Pan X, Bao X (2008) Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. J Am Chem Soc 130:9414–9419. https://doi.org/10.1021/ja8008192

    Article  PubMed  CAS  Google Scholar 

  34. Nguyen TT, Serp P (2013) Confinement of metal nanoparticles in carbon nanotubes. ChemCatChem 5:3595–3603. https://doi.org/10.1002/cctc.201300527

    Article  CAS  Google Scholar 

  35. Taghavi S, Tavasoli A, Asghari A, Signoretto M (2019) Loading and promoter effects on the performance of nitrogen functionalized graphene nanosheets supported cobalt Fischer-Tropsch synthesis catalysts. Int J Hydrogen Energy 44:10604–10615. https://doi.org/10.1016/j.ijhydene.2019.03.015

    Article  CAS  Google Scholar 

  36. Ali S, Zabidi NAM, Subbarao D (2012) Effect of niobium promoter on iron-based catalyst for Fischer-Tropsch reaction. J Fuel Chem Technol 40:48–53. https://doi.org/10.1016/S1872-5813(12)60006-1

    Article  CAS  Google Scholar 

  37. Yan Z, Bukur DB, Goodman DW (2011) Silica-supported rhodium-cobalt catalysts for Fischer – Tropsch synthesis. Catal Today 160:39–43. https://doi.org/10.1016/j.cattod.2010.06.023

    Article  CAS  Google Scholar 

  38. Tavasoli A, Taghavi S (2013) Performance enhancement of bimetallic Co-Ru/CNTs nano catalysts using microemulsion technique. J Energy Chem 22:747–754. https://doi.org/10.1016/S2095-4956(13)60099-6

    Article  CAS  Google Scholar 

  39. Hamid HH, Zabidi NAM (2021) Fischer-Tropsch synthesis using cobalt-iron catalysts. In: Ramli A (ed) Green Chemistry. UTP Press, Seri Iskandar

    Google Scholar 

  40. Akbarzadeh O, Zabidi NAM, Wang G, Kordijazi A, Sadabadi H, Johan MR (2020) Effect of pressure, H2/CO ratio, and reduction conditions on Co–Mn/CNT bimetallic catalyst. Symmetry 12:698. https://doi.org/10.3390/sym12050698

    Article  CAS  Google Scholar 

  41. Nakhaei Pour A, Housaindokht M (2013) Fischer-Tropsch synthesis over CNT supported cobalt catalysts: role of metal nanoparticle size on catalyst activity and products selectivity. Catal Lett 143:1328–1338. https://doi.org/10.1007/s10562-013-1070-y

    Article  CAS  Google Scholar 

  42. Akbarzadeh O, Zabidi NAM, Abdullah B, Subbarao D (2013) Influence of acid and thermal treatments on properties of carbon nanotubes. Adv Mater Res 832:394–398. https://doi.org/10.4028/www.scientific.net/AMR.832.394

    Article  CAS  Google Scholar 

  43. Karimi A, Nasernejad B, Rashidi AM, Tavasoli A, Pourkhalil M (2014) Functional group effect on carbon nanotube (CNT)-supported cobalt catalysts in Fischer-Tropsch synthesis activity, selectivity, and stability. Fuel 117:1045–1051. https://doi.org/10.1016/j.fuel.2013.10.014

    Article  CAS  Google Scholar 

  44. Wang Z, Skiles S, Yang F, Yan Z, Goodman DW (2012) Particle size effects in Fischer-Tropsch synthesis by cobalt. Catal Today 181:75–81. https://doi.org/10.1016/j.cattod.2011.06.021

    Article  CAS  Google Scholar 

  45. Yang J, Tveten EZ, Chen D, Holmen A (2010) Understanding the effect of cobalt particle size on Fischer-Tropsch synthesis: Surface species and mechanistic studies by SSITKA and kinetic isotope effect. Langmuir 228:16558–16567. https://doi.org/10.1021/la101555u

    Article  CAS  Google Scholar 

  46. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, De Jong KP (2006) Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964. https://doi.org/10.1021/ja058282w

    Article  PubMed  CAS  Google Scholar 

  47. Gu B, Zhou C, He S, Moldovan S, Chernavskii PA, Ordomsky VV, Khodakov AY (2020) Size and promoter effects on iron nanoparticles confined in carbon nanotubes and their catalytic performance in light olefin synthesis from syngas. Catal Today 357:203–213. https://doi.org/10.1016/j.cattod.2019.05.054

    Article  CAS  Google Scholar 

  48. Xiong H, Motchelaho MA, Moyo M, Jewell LL, Coville NJ (2015) Effect of Group I alkali metal promoters on Fe/CNT catalysts in Fischer-Tropsch synthesis. Fuel 150:687–696. https://doi.org/10.1016/j.fuel.2015.02.099

    Article  CAS  Google Scholar 

  49. Akbarzadeh O, Zabidi NAM, Abdullah B, Subbarao D (2014) Synthesis and characterization of Co/CNTs catalysts prepared by strong electrostatic adsorption (SEA) method. Appl Mech Mater 625:328–332. https://doi.org/10.4028/www.scientific.net/AMM.625.328

    Article  CAS  Google Scholar 

  50. Saib AM, Borgna A, van de Loosdrecht J, van Berge PJ, Geus JW, Niemantsverdriet JW (2006) Preparation and characterisation of spherical Co/SiO2 model catalysts with well-defined nano-sized cobalt crystallites and a comparison of their stability against oxidation with water. J Catal 239:326–339. https://doi.org/10.1016/j.jcat.2006.02.004

    Article  CAS  Google Scholar 

  51. Tavasoli A, Taghavi S, Tabyar S, Karimi S (2014) Enhancement of ruthenium-promoted Co/CNTs nanocatalyst performance using microemulsion technique. Int J Ind Chem 5:9. https://doi.org/10.1007/s40090-014-0009-5

    Article  Google Scholar 

  52. Kónya Z, Kiss J, Oszkó A, Siska A, Kiricsi I (2001) XPS characterisation of catalysts during production of multiwalled carbon nanotubes. Phys Chem Chem Phys 3:155–158. https://doi.org/10.1039/b007279f

    Article  Google Scholar 

  53. Abidov A, Allabergenov B, Lee J, Jeon H-W, Jeong S-W, Kim S (2013) X-Ray photoelectron spectroscopy characterization of Fe doped TiO2 photocatalyst. Int J Mater, Mechan Manuf 1:294–296. https://doi.org/10.7763/IJMMM.2013.V1.63

    Article  CAS  Google Scholar 

  54. Borg Ø, Hammer N, Eri S, Lindvåg OA, Myrstad R, Blekkan EA, Holmen A (2009) Fischer-Tropsch synthesis over un-promoted and Re-promoted γ-Al2O3 supported cobalt catalysts with different pore sizes. Catal Today 142:70–77. https://doi.org/10.1016/j.cattod.2009.01.012

    Article  CAS  Google Scholar 

  55. Li YP, Wang TJ, Wu CZ, Qin XX, Tsubaki N (2009) Effect of Ru addition to Co/SiO2/HZSM-5 catalysts on Fischer-Tropsch synthesis of gasoline-range hydrocarbons. Catal Commun 10:1868–1874. https://doi.org/10.1016/j.catcom.2009.06.021

    Article  CAS  Google Scholar 

  56. Tavasoli A, Mortazavi Y, Khodadadi AA, Mousavian MA, Sadagiani K, Karimi A (2005) Effects of different loadings of Ru and Re on physico-chemical properties and performance of 15% Co/Al2O3 FTS catalysts. Iran J Chem Chem Eng 24:9–17. https://doi.org/10.30492/ijcce.2005.8111

    Article  CAS  Google Scholar 

  57. Toncón-Leal CF, Múnera JF, Arroyo-Gómez JJ, Sapag K (2012) Fe, Co and Fe/Co catalysts supported on SBA-15 for Fischer-Tropsch Synthesis. Catal Today 394–396:150–160. https://doi.org/10.1016/j.cattod.2021.07.023

    Article  CAS  Google Scholar 

  58. Jam S, Ahangary MG, Tavasoli A, Sadaghiani K, Nakhaei Pour A (2006) Enhancement of distillate selectivity in Fischer-Tropsch synthesis by using iron and cobalt catalysts in a novel dual-bed reactor. React Kinet Catal Lett 89:71–79. https://doi.org/10.1007/s11144-006-0088-1

    Article  CAS  Google Scholar 

  59. Wang C, Wang Q, Sun X, Xu L (2005) CO hydrogenation to light alkenes over Mn/Fe catalysts prepared by coprecipitation and sol-gel methods. Catal Lett 105:93–101. https://doi.org/10.1007/s10562-005-8011-3

    Article  CAS  Google Scholar 

  60. Den Otter JH, Nijveld SR, De Jong KP (2016) Synergistic promotion of Co/SiO2 fischer-tropsch catalysts by niobia and platinum. ACS Catal 6:1616–1623. https://doi.org/10.1021/acscatal.5b02418

    Article  CAS  Google Scholar 

  61. Yang X, Yang J, Zhao T, Qian W, Wang Y, Holmen A, Jiang W, Chen D, Ben X (2022) Kinetic insights into the effect of promoters on Co/Al2O3 for Fischer-Tropsch synthesis. Chem Eng J 445:136655. https://doi.org/10.1016/j.cej.2022.136655

    Article  CAS  Google Scholar 

  62. Bertella F, Lopes CW, Foucher AC, Agostini G, Concepción P, Stach EA, Martínez A (2020) Insights into the promotion with Ru of Co/TiO2 Fischer-Tropsch catalysts: an in situ spectroscopic study. ACS Catal 10:6042–6057. https://doi.org/10.1021/acscatal.9b05359

    Article  CAS  Google Scholar 

  63. Trépanier M, Dalai AK, Abatzoglou N (2010) Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: role of nanoparticle size on reducibility, activity, and selectivity in Fischer-Tropsch reactions. Appl Catal A 374:79–86. https://doi.org/10.1016/j.apcata.2009.11.029

    Article  CAS  Google Scholar 

  64. Mendes FMT, Perez CAC, Noronha FB, Souza CDD, Cesar DV, Freund HJ, Schmal M (2006) Fischer−Tropsch Synthesis on anchored Co/Nb2O5/Al2O3 catalysts: the nature of the surface and the effect on chain growth. J Phys Chem B 110:9155–9163. https://doi.org/10.1021/jp060175g

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education (Higher Education Department) under MyRA Incentive Grant Program (cost center: 0153AB-J06) and Universiti Teknologi PETRONAS.

Funding

MyRA Incentive Grant Program,cost center: 0153AB-J06

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Asmawati Mohd Zabidi.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, H.H., Mohd Zabidi, N.A. & Shaharun, M.S. Effects of Promoters on the Physicochemical Properties of Cobalt-Iron Catalysts Supported on Multiwalled-Carbon Nanotubes. Catal Lett 154, 245–258 (2024). https://doi.org/10.1007/s10562-023-04294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04294-2

Keywords

Navigation