Skip to main content

Advertisement

Log in

Effect of Calcination Temperature on the Performance of SiO2@Co@CeO2 Catalyst in CO2 Reforming With Ethanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalyst calcination temperature is regarded as one of the vital factors affecting its performance in the heterogeneous catalysis reactions. In this work, the effect of calcination temperature was investigated in detail to design an optimalSiO2@Co@CeO2 catalyst with core–shell structure for CO2 reforming with ethanol reaction. Meanwhile, the structure–activity relationship was also depicted via XRD, TEM, Raman, H2-TPR characterization technique etc. In particular, the catalyst calcined at 550 °C presented the stronger metal-support interaction, the relatively larger specific surface area as well as the smaller grain sizes. Indeed, these structural properties could guarantee the better activity/stability in ethanol dry reforming, due to the enhanced ability to prevent coke deposition and the sintering of active metal. In contrast, the exposure to higher calcination temperature (850 °C) could lead to the aggregation of active species and the weaker Co-Ce interaction, which corresponded to the continuous deactivation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang F, Han J, Xu L, Yu H, Shi W (2021) Ni/SiO2 catalyst prepared by strong electrostatic adsorption for a low-temperature methane dry reforming reaction. Ind Eng Chem Res 60:3324–3333

    Article  CAS  Google Scholar 

  2. Li X, Yu JG, Jaroniec M, Chen XB (2021) Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev 119:3962–4179

    Article  Google Scholar 

  3. de Souza MG, Melo DMA, Medeiros RLBA, Maziviero FV, Macedo HP, Oliveria AAS, Braga RM (2022) NiO-MgAl2O4 systems for dry reforming of methane: effect of the combustion synthesis route in the catalysts properties. Mater Chem Phys 278:125599

    Article  Google Scholar 

  4. Zhang S, Chen L, Pan WB, Shen YY, Li H (2022) Composition effect in CuZr nanoparticles for CO2 conversion to CH3OH. Mater Chem Phys 283:125994

    Article  CAS  Google Scholar 

  5. Bahari MB, Phuc NHH, Abdullah B, Alenazey F, Vo DVN (2016) Ethanol dry reforming for syngas production over Ce-promoted Ni/Al2O3 catalyst. J Environ Chem Eng 4:4830–4838

    Article  CAS  Google Scholar 

  6. Zawadzki A, Bellido JDA, Lucrédio AF, Assaf EM (2014) Dry reforming of ethanol over supported Ni catalysts prepared by impregnation with methanolic solution. Fuel Process Technol 128:432–440

    Article  CAS  Google Scholar 

  7. Cai WJ, Dong JL, Chen Q, Xu TK, Zhai SR, Liu XY, Cui L, Zhang SY (2020) One-pot microwave-assisted synthesis of Cu-Ce0.8Zr0.2O2 with flower-like morphology: Enhanced stability for ethanol dry reforming. Adv Powder Technol 31:3874

    Article  CAS  Google Scholar 

  8. Wei YC, Cai WJ, Deng SJ, Li ZC, Yu H, Zhang SY, Yu ZH, Cui L, Qu FZ (2020) Efficient syngas production via dry reforming of renewable ethanol over Ni/KIT-6 nanocatalysts. Renew Energ 145:1507–1516

    Article  CAS  Google Scholar 

  9. Ramkiran A, Vo DVN, SabriMahmud M (2021) Syngas production from ethanol dry reforming using Cu-based perovskite catalysts promoted with rare earth metals. Int J Hydrog Energy 46:24845–24854

    Article  CAS  Google Scholar 

  10. Dang CX, Wu SJ, Yang GX, Cao YH, Wang HJ, Peng F, Yu H (2020) Syngas production by dry reforming of the mixture of glycerol and ethanol with CaCO3. J Energy Chem 43:90–97

    Article  Google Scholar 

  11. Arapova M, Smal E, Bespalkov Y, Fedorova V, Valeev K, Cherepanova S, Ischenko A, Sadykov V, Simonov M (2021) Ethanol dry reforming over Ni supported on modified ceria-zirconia catalysts-the effect of Ti and Nb dopants. Int J Hydrog Energy 46:39236–39250

    Article  CAS  Google Scholar 

  12. Han K, Yu W, Xu L, Deng Z, Yu H, Wang F (2021) Reducing carbon deposition and enhancing reaction stability by ceria formethane dry reforming over Ni@SiO2@CeO2 catalyst. Fuel 291:120182

    Article  CAS  Google Scholar 

  13. Fang W, Chen JH, Zhou XY, Chen JJ, Ye ZP, Li JH (2020) Zeolitic imidazolate framework-67-derived CeO2@Co3O4 core-shell microspheres with enhanced catalytic activity toward toluene oxidation. Ind Eng Chem Res 59:10328–10337

    Article  CAS  Google Scholar 

  14. Li ZW, Mo LY, Kathiraser Y, Kaw S (2014) Yolk-satellite-shell structured Ni-Yolk@Ni@SiO2 nanocomposite: superb catalyst toward methane CO2 reforming reaction. ACS Catal 4:1526–1536

    Article  CAS  Google Scholar 

  15. Han BL, Zhao L, Wang FG, Xu LL, Yu H, Cui Y, Zhang JM, Shi WD (2020) Effect of calcination temperature on the performance of the Ni@SiO2 catalyst in methane dry reforming. Ind Eng Chem Res 59:13370–13379

    Article  CAS  Google Scholar 

  16. Han K, Wang Y, Wang S, Liu Q, Deng Z, Wang F (2021) Narrowing band gap energy of CeO2 in (Ni/CeO2)@SiO2 catalyst forphotothermal methane dry reforming. Chem Eng J 421:129989

    Article  CAS  Google Scholar 

  17. Yu M, Zhu K, Liu Z, Xiao H, Deng W, Zhou X (2014) Carbon dioxide reforming of methane over promoted NixMg1-xO (111) platelet catalyst derived from solvothermal synthesis. Appl Catal B Environ 148–149:177–190

    Article  Google Scholar 

  18. Das S, Ashok J, Bian Z, Dewangan N, Wai MH, Du Y, Borgna A, Hidajat K, Kawi S (2018) Silica-Ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: coke resistance and mechanistic insights. Appl Catal B 230:220–236

    Article  CAS  Google Scholar 

  19. Li FF, Wang MY, Zhang JM, Lin XT, Wang DZ, Cai WJ (2022) Sandwich-type Co core@shell nanocomposite (SiO2 @Co@CeO2): Coke resistant catalyst toward CO2 reforming with ethanol. Appl Catal A 638:118605

    Article  CAS  Google Scholar 

  20. Lin SSY, Daimon H, Ha SY (2009) Co/CeO2-ZrO2 catalysts prepared by impregnation and coprecipitation for ethanol steam reforming. Appl Catal A 366:252–261

    Article  CAS  Google Scholar 

  21. Larese C, Granados ML, Mariscal R, Fierro JLG, Lambrou PS, Efstathiou AM (2005) The effect of calcination temperature on the oxygen storage and release properties of CeO2 and Ce-Zr-O metal oxides modified by phosphorus incorporation. Appl Catal B 59:13–25

    Article  CAS  Google Scholar 

  22. Soykal II, Sohn H, Ozkan US (2012) Effect of support particle size in steam reforming of ethanol over Co/CeO2 catalysts. ACS Catal 2:2335–2348

    Article  CAS  Google Scholar 

  23. Wang MY, Li FF, Chen Q, Cai WJ (2021) Ethanol dry reforming over Mn-doped Co/CeO2 catalysts with enhanced activity and stability, Energ. Fuel 35:13945–13954

    Article  CAS  Google Scholar 

  24. Li MR, Song YY, Wang GC (2019) The mechanism of steam-ethanol reforming on Co13/CeO2–x: a DFT study. ACS Catal 9:2335–2367

    Google Scholar 

  25. Cheng Z, Zhang L, Jin NN, Zhu YY, Chen LH, Yang Q, Yan M, Ma XX, Wang XD (2021) Effect of calcination temperature on the performance of hexaaluminate supported CeO2 for chemical looping dry reforming. Fuel Process Technol 218:106873

    Article  CAS  Google Scholar 

  26. Al-Fatesh ASA, Fakeeha AH (2012) Effects of calcination and activation temperature on dry reforming catalysts. J Saudi Chem Soc 16:55–61

    Article  CAS  Google Scholar 

  27. Joo OS, Jung KD (2002) CH4 dry reforming on alumina-supported nickel catalyst. Bull Korean Chem Soc 23:1149–1153

    Article  CAS  Google Scholar 

  28. Abasaeed AE, Al-Fatesh AS, Naeem MA, Ibrahim AA, Fakeeha AH (2015) Catalytic performance of CeO2 and ZrO2 supported Co catalysts for hydrogen production via dry reforming of methane. Int J Hydrogen Energy 40:6818–6826

    Article  CAS  Google Scholar 

  29. Shao JJ, Zhang P, Tang XF, Zhang BC, Song W, Xu YD, Shen WJ (2007) Effect of preparation method and calcination temperature on low-temperature CO oxidation over Co3O4/CeO2 catalysts. Chin J Catal 28:163–169

    Article  CAS  Google Scholar 

  30. Yao X, He YC, Fu SQ, Yang XC, Cui SC, Cheng LL, Pan Y, Jiao Z (2022) Bimetallic MOF-derived CeO2/Co3O4 microflowers with synergy of oxygen vacancy and p-n heterojunction for high-performance n-butanol sensors. Mater Today Commun 33:104445

    Article  CAS  Google Scholar 

  31. Wang HY, Ruckenstein E (2001) CO2 reforming of CH4 over Co/MgO solid solution catalysts: effect of calcination temperature and Co loading. Appl Catal A Gen 209:207–215

    Article  CAS  Google Scholar 

  32. Sun H, Wang H, Zhang J (2007) Preparation and characterization of nickel-titanium composite xerogel catalyst for CO2 reforming of CH4. Appl Catal B Environ 73:158–165

    Article  CAS  Google Scholar 

  33. Wang Z, Shao X, Larcher A, Xie K, Dong D, Li CZ (2013) A study on carbon formation over fibrous NiO/CeO2nanocatalysts during dry reforming of methane. Catal Today 216:44–49

    Article  CAS  Google Scholar 

  34. Ozdemir H, Oksuzomer MAF, Gurkaynak MA (2014) Effect of the calcination temperature on Ni/MgAl2O4 catalyst structure and catalytic properties for partial oxidation of methane. Fuel 116:63–70

    Article  Google Scholar 

  35. An KJ, Zhang Q, Alayoglu S, Musselwhite N, Shin JY, Somorjai GA (2014) High-temperature catalytic reforming of n-Hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability. Nano Lett 14:4907–4912

    Article  CAS  PubMed  Google Scholar 

  36. Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen JR, Chorkendorff I, Sehested J, Nørskov JK (2008) First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J Catal 259:147–160

    Article  CAS  Google Scholar 

  37. Christensen KO, Chen D, Lødeng R, Holmen A (2006) Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming. Appl Catal A 314:9–22

    Article  CAS  Google Scholar 

  38. Park JH, Yeo S, Chang TS (2018) Effect of supports on the performance of Co-based catalysts in methane dry reforming. J CO2 Util 26:465–475

    Article  CAS  Google Scholar 

  39. Chen X, Chen X, Yu EQ, Cai SC, Jia HP, Chen J, Liang P (2018) In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion. Chem Eng J 344:469–479

    Article  CAS  Google Scholar 

  40. Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye–Scherrer equation.’ Nature Nanotech 6:534

    Article  CAS  Google Scholar 

  41. Han K, Wang S, Hu N, Shi W, Wang F (2022) Alloying Ni-Cunanoparticles encapsulated in SiO2 nanospheres for synergisticcatalysts in CO2 reforming with methane reaction. ACS Appl Mater Interfaces 14:23487–23495

    Article  CAS  Google Scholar 

  42. Atribak I, Bueno-Lopez A, Garcia-Garcia A (2008) Combined removal of diesel soot particulates and NOx over CeO2-ZrO2 mixed oxides. J Catal 259:123–132

    Article  CAS  Google Scholar 

  43. Djinovic P, Batista J, Pintar A (2008) Calcination temperature and CuO loading dependence on CuO-CeO2 catalyst activity for water-gas shift reaction. Appl Catal A Gen 347:23–33

    Article  CAS  Google Scholar 

  44. Patel S, Pant KK (2007) Selective production of hydrogen via oxidative steam reforming of methanol using Cu-Zn-Ce-Al oxide catalysts. Chem Eng Sci 62(18–20):5436–5443

    Article  CAS  Google Scholar 

  45. Arslan A, Dogu T (2016) Effect of calcination/reduction temperature of Ni impregnated CeO2-ZrO2 catalysts on hydrogen yield and coke minimization in low temperature reforming of ethanol. Int J Hydrogen Energy 41:16752–16761

    Article  CAS  Google Scholar 

  46. Terribile D, Trovarelli A, Llorca J, De Leitenburg C, Dolcetti G (1998) The synthesis and characterization of mesoporous high surface area ceria prepared using a hybrid organic/inorganic route. J Catal 178:299–308

    Article  CAS  Google Scholar 

  47. Lan D, Gao ZG, Zhao ZH, Wu GL, Kou KC, Wu HJ (2021) Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption. Chem Eng J 408:127313

    Article  CAS  Google Scholar 

  48. Zhang L, Zhang L, Xu GC, Zhang C, Li X, Sun ZP, Jia DZ (2017) Low-temperature CO oxidation over CeO2 and CeO2@Co3O4 core-shell microspheres. New J Chem 41:13418–13424

    Article  CAS  Google Scholar 

  49. Reddy BM, Saikia P, Bharali P, Katta L, Thrimurthulu G (2009) Highly dispersed ceria and ceria-zirconia nanocomposites over silica surface for catalytic applications. Catal Today 141:109–114

    Article  CAS  Google Scholar 

  50. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) Raman and X-ray photoelectron spectroscopy study of CeO2-ZrO2 and V2O5/CeO2-ZrO2 catalysts. Langmuir 19:3025–3030

    Article  CAS  Google Scholar 

  51. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) Structural characterization of CeO2-MO2 (M=Si4+, Ti4+, and Zr4+) mixed oxides by Raman spectroscopy, X-ray photoelectron spectroscopy, and other techniques. J Phys Chem B 107:11475–11484

    Article  CAS  Google Scholar 

  52. Deo G, Wachs IE (1991) Predicting molecular structures of surface metal oxide species on oxide supports under ambient conditions. J Phys Chem 95:5889–5895

    Article  CAS  Google Scholar 

  53. Chen GZ, Xu QH, Wang Y, Song GL, Li CC, Zhao W, Fan WL (2016) Solubility product difference-guided synthesis of Co3O4-CeO2 core-shell catalysts for CO oxidation, Catal. Sci Technol 6:7273–7279

    CAS  Google Scholar 

  54. Reddy BM, Lakshmanan P, Bharali P, Saikia P (2006) Dehydration of 4-methylpentan-2-ol over CexZr1−xO2/SiO2 nano-composite catalyst. J Mol Catal A: Chem 258:355–360

    Article  CAS  Google Scholar 

  55. Liu X, Zhou K, Wang L, Wang B, Li Y (2009) Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J Am Chem Soc 131:3140–3141

    Article  CAS  PubMed  Google Scholar 

  56. Kong M, Yang Q, Lu W, Fan ZY, Fei JH, Zheng XM, Thomas DW (2012) Effect of calcination temperature on characteristics and performance of Ni/MgO catalyst for CO2 reforming of toluene. Chin J Catal 33:1508–1516

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Innovative Talents Program in Colleges and Universities of Liaoning Province (LR2019006) and Scientific Research Funding of the Educational Department of Liaoning Province (J2020001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijie Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Wang, S., Li, T. et al. Effect of Calcination Temperature on the Performance of SiO2@Co@CeO2 Catalyst in CO2 Reforming With Ethanol. Catal Lett 153, 3712–3723 (2023). https://doi.org/10.1007/s10562-023-04282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04282-6

Keywords

Navigation