Skip to main content
Log in

Propane Oxidative Dehydrogenation Over Sr-Doped V Catalyst Supported on Nb2O5–Al2O3

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this paper, promoter effect of strontium over V catalysts supported on physically mixed Nb2O5–Al2O3 was evaluated for the propane oxidative dehydrogenation to propene. The relationship among acid–base properties, surface species dispersion and catalytic activity was preliminarily established for catalysts prepared by co-impregnation and consecutive impregnation of V and Sr.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carrero CA, Schloegl R, Wachs IE, Schomaecker R (2014) Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts. ACS Cat 4:3357–4338. https://doi.org/10.1021/cs5003417

    Article  CAS  Google Scholar 

  2. Cavani F, Ballarini N, Cericola A (2007) Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal Today 127:113–131. https://doi.org/10.1016/j.cattod.2007.05.009

    Article  CAS  Google Scholar 

  3. Alotaibi FM, González-Cortés S, Alotibi MF, Xiao T, Al-Megren H, Yang G, Edwards PP (2018) Enhancing the production of light olefins from heavy crude oils: turning challenges into opportunities. Catal Today 317(86):98. https://doi.org/10.1016/j.cattod.2018.02.018

    Article  CAS  Google Scholar 

  4. Akah A, Al-Ghrami M (2015) Maximizing propylene production via FCC technology. Appl Petrochem Res 5:377–392. https://doi.org/10.1007/s13203-015-0104-3

    Article  CAS  Google Scholar 

  5. Amghizar I, Vandewalle LA, Van Geem KM, Marin GB (2017) New trends in olefin production. Engineering 3:171–178. https://doi.org/10.1016/J.ENG.2017.02.006

    Article  CAS  Google Scholar 

  6. Mamedov EA, Corberán VC (1995) Oxidative dehydrogenation of lower alkanes on vanadium oxide-based catalysts. the present state of the art and outlooks. Appl Catal A Gen 127:1–40. https://doi.org/10.1016/0926-860X(95)00056-9

    Article  CAS  Google Scholar 

  7. Gambo Y, Adamu S, Abdulrasheed AA, Lucky RA, Ba-Shammakh MS, Hossain MM (2021) Catalyst design and tuning for oxidative dehydrogenation of propane – A review. Appl Catal A Gen 609:117914. https://doi.org/10.1016/j.apcata.2020.117914

    Article  CAS  Google Scholar 

  8. Al-Ghamdi SA, Lasa HI (2014) Propylene production via propane oxidative dehydrogenation over VOx/γ-Al2O3 catalyst. Fuel 128:120–140. https://doi.org/10.1016/j.fuel.2014.02.033

    Article  CAS  Google Scholar 

  9. Grant JT, Love AM, Carlos Carrero CA, Huang F, Panger J, Verel R, Hermans I (2016) Improved supported metal oxides for the oxidative dehydrogenation of propane. Top Catal 59:1545–1553. https://doi.org/10.1007/s11244-016-0671-2

    Article  CAS  Google Scholar 

  10. Chu W, Luo J, Paul S, Liu Y, Khodakov A, Bordes E (2017) Synthesis and performance of vanadium-based catalysts for the selective oxidation of light alkanes. Catal Today 298:145–157. https://doi.org/10.1016/j.cattod.2017.05.004

    Article  CAS  Google Scholar 

  11. Redfern PC, Zapol P, Sternberg M, Adiga SP, Zygmunt SA, Curtiss LA (2006) Quantum chemical study of mechanisms for oxidative dehydrogenation of propane on vanadium oxide. J Phys Chem B 110:8363–8371. https://doi.org/10.1021/jp056228w

    Article  CAS  PubMed  Google Scholar 

  12. He Y, Ji H, Xu J, Wang L (2009) Deep oxidation in propane oxidative dehydrogenation to propene over V2O5/γ-Al2O3 studied by in-situ DRIFTS. J Nat Gas Chem 18:359–364. https://doi.org/10.1016/S1003-9953(08)60116-4

    Article  CAS  Google Scholar 

  13. Klisińska A, Loridant S, Grzybowska B, StochaI J, Gressela I (2006) Effect of additives on properties of V2O5/SiO2 and V2O5/MgO catalysts: II. structure and physicochemical properties of the catalysts and their correlations with oxidative dehydrogenation of propane and ethane. Appl Catal A Gen 309:17–27. https://doi.org/10.1016/j.apcata.2006.04.040

    Article  CAS  Google Scholar 

  14. Lemonidou AA, Nalbandian L, Vasalos IA (2000) Oxidative dehydrogenation of propane over vanadium oxide based catalysts: effect of support and alkali promoter. Catal Today 61:333–341. https://doi.org/10.1016/S0920-5861(00)00393-X

    Article  CAS  Google Scholar 

  15. Cortez GG, Fierro JLG, Bañares MA (2003) Role of potassium on the structure and activity of alumina-supported vanadium oxide catalysts for propane oxidative dehydrogenation. Catal Today 78:219–228. https://doi.org/10.1016/S0920-5861(02)00341-3

    Article  CAS  Google Scholar 

  16. Savova B, Filkova D, Crişan D, Răileanu M, Drăgan N, Petrov L, Védrine JC (2009) Neodymium-doped alkaline-earth oxide catalysts for propane oxidative dehydrogenation. Part II catalytic properties. Appl Catal A Gen 359:55–61. https://doi.org/10.1016/j.apcata.2009.02.019

    Article  CAS  Google Scholar 

  17. Putra MD, Al-Zahrani SM, Abasaeed AE (2011) Oxidative dehydrogenation of propane to propylene over Al2O3 -supported Sr–V–Mo catalysts. Catal Commun 14:107–110. https://doi.org/10.1016/j.catcom.2011.07.025

    Article  CAS  Google Scholar 

  18. Guerrero-Pérez MO, Bañares MA (2009) Niobium as promoting agent for selective oxidation reactions. Catal Today 142:245–251. https://doi.org/10.1016/j.cattod.2008.10.041

    Article  CAS  Google Scholar 

  19. Putra MD, Al-Zahrani SM, Abasaeed AE (2012) Oxidehydrogenation of propane to propylene over Sr–V–Mo catalysts: effects of reaction temperature and space-time. J Ind Eng Chem 18:1153–1156. https://doi.org/10.1016/j.jiec.2012.01.013

    Article  CAS  Google Scholar 

  20. Martra G, Arena F, Coluccia S, Frusteri F, Parmaliana A (2000) Factors controlling the selectivity of V2O5 supported catalysts in the oxidative dehydrogenation of propane. Catal Today 63:197–207. https://doi.org/10.1016/S0920-5861(00)00460-0

    Article  CAS  Google Scholar 

  21. Khodakov A, Olthof B, Bell AT, Iglesia E (1999) Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. J Catal 181:205–216. https://doi.org/10.1006/jcat.1998.2295

    Article  CAS  Google Scholar 

  22. Rossetti I, Mancini GF, Ghigna P, Scavini M, Piumetti M, Bonelli B, Cavani F, Comite A (2012) Spectroscopic Enlightening of the local structure of vox active sites in catalysts for the odh of propane. J Phys Chem C 116:22386–22398. https://doi.org/10.1021/jp307031b

    Article  CAS  Google Scholar 

  23. Grasselli RK (2014) Site isolation and phase cooperation: two important concepts in selective oxidation catalysis: a retrospective. Catal Today 238:10–27. https://doi.org/10.1016/j.cattod.2014.05.036

    Article  CAS  Google Scholar 

  24. Kondratenko EV, Baerns M (2001) Catalytic oxidative dehydrogenation of propane in the presence of O2 and N2O-the role of vanadia distribution and oxidant activation. Appl Catal A Gen 222:133–143. https://doi.org/10.1016/S0926-860X(01)00836-5

    Article  CAS  Google Scholar 

  25. Rostom S, de Lasa H (2020) Propane oxidative dehydrogenation on vanadium-based catalysts under oxygen-free atmospheres. Catalysts 10:418. https://doi.org/10.3390/catal10040418

    Article  CAS  Google Scholar 

  26. Reddy EP, Varma RS (2004) Preparation, characterization, and activity of Al2O3-supported V2O5 catalysts. J Catal 221:93–101. https://doi.org/10.1016/j.jcat.2003.07.011

    Article  CAS  Google Scholar 

  27. Jehng JM, Wachs IE (1990) Structural chemistry and raman spectra of niobium oxides. Chem Mater 3:100–107. https://doi.org/10.1021/cm00013a025

    Article  Google Scholar 

  28. Ventura WM, Batalha DC, Fajardo HV, Taylor JG, Marins NH, Noremberg BS, Tańskic T, Carreño NLV (2017) Low temperature liquid phase catalytic oxidation of aniline promoted by niobium pentoxide micro and nanoparticles. Catal Commun 99:135–140. https://doi.org/10.1016/j.catcom.2017.06.004

    Article  CAS  Google Scholar 

  29. Sanchez C, Livage J, Lucazeau G (1982) Infrared and raman study of amorphous V2O5. J Raman Spectrosc 12:68–72. https://doi.org/10.1002/jrs.1250120110

    Article  CAS  Google Scholar 

  30. Koduru HK, Obili HM, Cecilia G (2013) Spectroscopic and electrochromic properties of activated reactive evaporated nano-crystalline V2O5 thin films grown on flexible substrates. Int Nano Lett 3:1–8. https://doi.org/10.1186/2228-5326-3-24

    Article  CAS  Google Scholar 

  31. Baddour-Hadjean R, Smirnov MB, Smirnov KS, Yu Kazimirov V, Gallardo-Amores JM, Amador U, Arroyo-de Dompablo ME, Pereira-Ramos JP (2012) Lattice dynamics of β-V2O5: Raman spectroscopic insight into the atomistic structure of a high-pressure vanadium pentoxide polymorph. Inorg Chem 51:3194–3201. https://doi.org/10.1021/ic202651b

    Article  CAS  PubMed  Google Scholar 

  32. Shvets P, Dikaya O, Maksimova K, Goikhman A (2018) A review of Raman spectroscopy of vanadium oxides. J Raman Spectrosc 50:1226–1244. https://doi.org/10.1002/jrs.5616

    Article  CAS  Google Scholar 

  33. Waal D, Range KJ, Konigstein M, Kiefer W (1998) Raman spectra of the barium oxide peroxide and strontium oxide peroxide series. J Raman Spectrosc 29:109–113. https://doi.org/10.1002/(SICI)1097-4555(199802)29:2%3c109::AID-JRS200%3e3.0.CO;2-Y

    Article  Google Scholar 

  34. Moggi P, Morselli S, Lucarelli C, Sarzi-Amadè M, Devillersb M (2005) Vanadium and niobium mixed-oxide catalysts obtained via sol-gel: preparation and catalytic behaviour in oxidative dehydrogenation of propane. Stud Surf Sci Catal 155:427–439. https://doi.org/10.1016/S0167-2991(05)80170-3

    Article  CAS  Google Scholar 

  35. Zhao Z, Gao X, Wachs IE (2003) Comparative study of bulk and supported V−Mo−Te−Nb−O mixed metal oxide catalysts for oxidative dehydrogenation of propane to propylene. J Phys Chem B 107:6333–6342. https://doi.org/10.1021/jp021640m

    Article  CAS  Google Scholar 

  36. Mcconnell AA, Anderson JS, Rao CNR (1976) Raman spectra of Niobium oxides. Spectrochim Acta A Mol Biomol Spectrosc 32:1067–1076. https://doi.org/10.1016/0584-8539(76)80291-7

    Article  Google Scholar 

  37. Chary KVR, Kishan G, Kumar CP, Sagar GV, Niemantsverdriet JW (2003) Characterization and reactivity of vanadium oxide catalysts supported on niobia. Appl Catal A Gen 245:303–316. https://doi.org/10.1016/S0926-860X(02)00654-3

    Article  CAS  Google Scholar 

  38. Moraes NP, Silva FN, Silva MLCP, Campos TMB, Thim GP, Rodrigues LA (2018) Methylene blue photodegradation employing hexagonal prism- shaped niobium oxide as heterogeneous catalyst: effect of catalyst dosage, dye concentration, and radiation source. Mater Chem Phys 214:95–106. https://doi.org/10.1016/j.matchemphys.2018.04.063

    Article  CAS  Google Scholar 

  39. Mu J, Wang J, Hao J, Cao P, Zhao S, Zeng W, Miao B, Xu S (2015) Hydrothermal synthesis and electrochemical properties of V2O5 nanomaterials with different dimensions. Ceram Int 41:12626–12632. https://doi.org/10.1016/j.ceramint.2015.06.091

    Article  CAS  Google Scholar 

  40. Heese FP, Dry M, Moller KP (1999) Single stage synthesis of diisopropyl ether—an alternative octane enhancer for lead-free petrol. Catal Today 49:327–335. https://doi.org/10.1016/S0920-5861(98)00440-4

    Article  CAS  Google Scholar 

  41. Bedia J, Rosas JM, Vera D, Rodríguez – Mirasol J, Cordero T, (2010) Isopropanol decomposition on carbon based acid and basic catalysts. Catal Today 158:89–96. https://doi.org/10.1016/j.cattod.2010.04.043

    Article  CAS  Google Scholar 

  42. Ferreira ML, Volpe M (2002) A combined theoretical and experimental study of supported vanadium oxide catalysts. J Mol Catal A Chem 184:349–360. https://doi.org/10.1016/S1381-1169(02)00026-2

    Article  CAS  Google Scholar 

  43. Ballarini N, Cavani F, Cortelli C, Giunchi C, Nobili P, Trifiró F, Catani R, Cornaro U (2003) Reactivity of V/Nb mixed oxides in the oxidehydrogenation of propane under co-feed and under redox-decoupling conditions. Catal Today 78:353–364. https://doi.org/10.1016/S0920-5861(02)00303-6

    Article  CAS  Google Scholar 

  44. Börrnert C, Zosel J, Polte A, Wenzel R, Guth U, Langbein H (2011) Temperature-dependent oxygen release, intercalation behaviour and catalytic properties of V2O5.xNb2O5 compounds. Mater Res Bull 46:1955–1962. https://doi.org/10.1016/j.materresbull.2011.07.018

    Article  CAS  Google Scholar 

  45. Pantazidis A, Bucholz SA, Zanthoff HW, Schuurman Y, Mirodatos C (1998) A TAP reactor investigation of the oxidative dehydrogenation of propane over a V-Mg-O catalyst. Catal Today 40:207–214. https://doi.org/10.1016/S0920-5861(98)00009-1

    Article  CAS  Google Scholar 

  46. Darvishi A, Davand R, Khorasheh F, Fattahi M (2016) Modeling-based optimization of a fixed-bed industrial reactor for oxidative dehydrogenation of propane. Chin J Chem Eng 24:612–622. https://doi.org/10.1016/j.cjche.2015.12.018

    Article  CAS  Google Scholar 

  47. Høj M, Jensen AD, Grunwaldt JD (2013) Structure of alumina supported vanadia catalysts for oxidative dehydrogenation of propane prepared by flame spray pyrolysis. Appl Catal A Gen 451:207–215. https://doi.org/10.1016/j.apcata.2012.09.037

    Article  CAS  Google Scholar 

  48. Murgia V, Sham E, Gottifredi JC, Farfan Torres EM (2004) Oxidative dehydrogenation of propane and n-butane over alumina supported vanadium catalysts. Lat Am Appl Res 34:75–82

    CAS  Google Scholar 

  49. Ballarini N, Cavani F, Cericola A, Cortelli C, Ferrari M, Trifirò F, Capannelli G, Comite A, Catani R, Cornaro U (2004) Supported vanadium oxide-based catalysts for the oxidehydrogenation of propane under cyclic conditions. Catal Today 91–92:99–104. https://doi.org/10.1016/j.cattod.2004.03.016

    Article  CAS  Google Scholar 

  50. Gao X, Jehng JM, Wachs IE (2002) In Situ UV–vis–NIR diffuse reflectance and raman spectroscopic studies of propane oxidation over ZrO2-supported vanadium oxide catalysts. J Catal 209:43–50. https://doi.org/10.1006/jcat.2002.3635

    Article  CAS  Google Scholar 

  51. Cortez GG, Bañares MA (2002) A Raman spectroscopy study of alumina-supported vanadium oxide catalyst during propane oxidative dehydrogenation with online activity measurement. J Catal 209:197–201. https://doi.org/10.1006/jcat.2002.3600

    Article  CAS  Google Scholar 

  52. Frank B, Dinse A, Ovsitser O, Kondratenko EV, Schomӓcker R (2007) Mass and heat transfer effects on the oxidative dehydrogenation of propane (ODP) over a low loaded VOx/Al2O3 catalyst. Appl Catal A Gen 323:66–76. https://doi.org/10.1016/j.apcata.2007.02.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES), Finance Code 001.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius M. Crivelaro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 637 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crivelaro, V.M., Cortez, G.G. Propane Oxidative Dehydrogenation Over Sr-Doped V Catalyst Supported on Nb2O5–Al2O3. Catal Lett 153, 3651–3664 (2023). https://doi.org/10.1007/s10562-022-04262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04262-2

Keywords

Navigation