Skip to main content
Log in

Highly Selective Oxidative Dehydrogenation of Propane to Propylene over VOx–SiO2 Catalysts

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

To avoid combustion of propane and/or propylene and to obtain high propylene selectivity, oxidative dehydrogenation of propane (ODHP) was carried out using the lattice oxygen of metal oxides in the absence of gas-phase oxygen. This paper summarized the results of our recent attempts to develop new concept and effective catalysts for ODHP. As metal oxides V2O5 was active for ODHP, especially isolated VO4 3− species were active and selective catalysts. The isolated VO4 3− species loaded on a moderate surface area SiO2 and the isolated VO4 3− species into SiO2 framework catalyst exhibited very high propylene selectivities in ODHP. Also, the mechanism of the formation of the isolated VOx species into SiO2 framework catalyst was studied by instrumental analyses. To obtain isolated VO4 3− species in the silica framework, alkoxy-exchange rates between (Si(OC2H5)4 and V(Ot-Bu)3O with PEG is of crucial importance. Isolated VO4 3− was dispersed in the silica framework of catalysts, when the catalysts were prepared with the higher degree of polymerization (over 10) of PEG and the lower vanadium contents (below 1.0 mmol/g-SiO2). During ODHP, lattice oxygen of isolated VO4 3− species was consumed to give propylene and water, was reduced to isolated V3+ species. Therefore regeneration of reduced isolated V3+ species with air is indispensable, and the performance was maintained for at least ten repeated cycles, suggesting that VOx–SiO2 would be a promising catalyst for ODHP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cavani F, Ballrini N, Cericola A (2007) Catal Today 127:113–131

    Article  CAS  Google Scholar 

  2. Cavani F, Trifiro F (1995) Catal Today 24:307–313

    Article  CAS  Google Scholar 

  3. Botella P, Garcia-Gonzalez E, Dejoz A, Lopez Nieto JM, Vazquez MI, Gonzalez-Calbet J (2004) J Catal 225:428–438

    Article  CAS  Google Scholar 

  4. Buyevskaya OV, Bruckner A, Kondratenko EV, Wolf D, Baerns M (2001) Catal Today 67:369–378

    Article  CAS  Google Scholar 

  5. Chaar MA, Patel D, Kung HH (1988) J Catal 109:463–467

    Article  CAS  Google Scholar 

  6. Corma A, López Nieto JM, Paredes N (1993) J Catal 144:425–438

    Article  CAS  Google Scholar 

  7. Pak C, Bell AT, Tilley TD (2002) J Catal 206:49–59

    Article  CAS  Google Scholar 

  8. Klishinska A, Samson K, Gressel I, Grzybowska B (2006) Appl Catal A 309:10–16

    Article  Google Scholar 

  9. Klishinska A, Loridant S, Grzybowska B, Stoch J, Gressel I (2006) Appl Catal A 309:17–27

    Article  Google Scholar 

  10. Chao Z, Ruckenstein E (2004) Catal Lett 94:217–221

    Article  CAS  Google Scholar 

  11. Siew Hew Sam D, Soenen V, Volta JC (1990) J Catal 123:417–435

    Article  Google Scholar 

  12. Soenen V, Herrmann JM, Volta JC (1996) J Catal 159:410–417

    Article  CAS  Google Scholar 

  13. Burrows A, Kiely CJ, Højlund-Nielsen PE, Vorbeck G, Calvino JJ, López-Cartes C (1999) Catal Lett 57:121–128

    Article  CAS  Google Scholar 

  14. Sugiyama S, Iizuka Y, Fukuda N, Hayashi H (2001) Catal Lett 73:137–140

    Article  CAS  Google Scholar 

  15. Sugiyama S, Hashimoto T, Shigemoto N, Hayashi H (2003) Catal Lett 89:229–233

    Article  CAS  Google Scholar 

  16. Sugiyama S, Hashimoto T, Morishita Y, Shigemoto N, Hayashi H (2004) Appl Catal A 270:253–260

    Article  CAS  Google Scholar 

  17. Routray K, Reddy KRSK, Deo G (2004) Appl Catal A 265:103–113

    Article  CAS  Google Scholar 

  18. Mitra B, Wacha IE, Deo G (2006) J Catal 240:151–159

    Article  CAS  Google Scholar 

  19. Rossetti I, Fabbrini L, Ballarini N, Oliva C, Cavani F, Cericola A, Bonelli B, Piumetti M, Garrone E, Dyrbeck H, Blekkan EA, Forni L (2009) Catal Today 141:271–281

    Article  CAS  Google Scholar 

  20. Hoj M, Jensen AD, Grunwaldt J (2013) Appl Catal A 451:207–215

    Article  Google Scholar 

  21. Rossetti I, Fabbrini L, Ballarini N, Oliva C, Cavani F, Cericola A, Bonelli B, Piumetti M, Garrone E, Dyrbeck H, Blekkan EA, Forni L (2008) J Catal 256:45–61

    Article  CAS  Google Scholar 

  22. Karakoulia SA, Triantafyllidis KS, Tsilomelekis G, Boghosian S, Lemonidou AA (2009) Catal Today 141:245–253

    Article  CAS  Google Scholar 

  23. Pieck CL, Banares MA, Fierro JLG (2004) J Catal 224:1–7

    Article  CAS  Google Scholar 

  24. Sasikala R, Sudarsan V, Sakuntala T, Jagannath, Sudakar C, Naik R, Bharadwaj SR (2008) Appl Catal A 350:252–258

    Article  CAS  Google Scholar 

  25. Stelzer JB, Caro J, Fait M (2005) Catal Commum 6:1–5

    Article  CAS  Google Scholar 

  26. Singh RP, Banares MA, Deo G (2005) J Catal 233:388–398

    Article  CAS  Google Scholar 

  27. Gao X, Banares MA, Wachs IE (1999) J Catal 188:325–331

    Article  CAS  Google Scholar 

  28. Banares MA, Martinez-Huerta MV, Gao X, Fierro JLG, Wachs IE (2000) Catal Today 61:295–301

    Article  CAS  Google Scholar 

  29. Gao X, Bare SR, Weckhuysen BM, Wachs IE (1998) J Phys Chem B 102:10842–10852

    Article  CAS  Google Scholar 

  30. Carrero CA, Keturakis CJ, Orrego A, Schomacker R, Wachs IE (2013) Dalton Trans 42:12644–12653

    Article  CAS  Google Scholar 

  31. Solsona B, Blasco T, Lopez Nieto JM, Pena ML, Rey F, Vidal-Moya A (2001) J Catal 203:443–453

    Article  CAS  Google Scholar 

  32. Liu Y, Cao Y, Yi N, Feng W, Dai W, Yan S, He H, Fan K (2004) J Catal 224:417–428

    Article  CAS  Google Scholar 

  33. Bulanek R, Cicmanec P, Sheng-Yang H, Knotek P, Capek L, Setnicka M (2012) Appl Catal A 415–416:29–39

    Article  Google Scholar 

  34. Gucbilmez Y, Dogu T, Balci S (2005) Catal Today 100:473–477

    Article  CAS  Google Scholar 

  35. Pena ML, Dejoz A, Fornes V, Rey F, Vazquez MI, Lopez Nieto M (2001) Appl Catal A 209:155–164

    Article  CAS  Google Scholar 

  36. Wang Y, Zhang Q, Ohishi Y, Shishido T, Takehira K (2001) Catal Lett 72:215–219

    Article  CAS  Google Scholar 

  37. Yang Y, Lim S, Wang C, Harding D, Haller G (2004) Microporous Mesoporous Mater 67:245–257

    Article  CAS  Google Scholar 

  38. Harlin ME, Niemi VM, Krause AOI (2000) J Catal 195:67–78

    Article  CAS  Google Scholar 

  39. Ballarini N, Cavani F, Ferrari M, Catani R (2003) Cornaro U 213:95–102

    CAS  Google Scholar 

  40. MaGregor J, Huang Z, Shiko G, Gladden LF, Stein RS, Duer MJ, Wu Z, Stair PC, Rugmini S, Jackson SD (2009) Catal Today 142:143–151

    Article  Google Scholar 

  41. Ovsitser O, Kondratenko EV (2010) Chem Commum 46:4974–4976

    Article  CAS  Google Scholar 

  42. Ovsitser O, Schomaecker R, Kondratenko EV, Wolfram T, Trunshke A (2012) Catal Today 192:16–19

    Article  CAS  Google Scholar 

  43. Setnicka M, Cicmanec P, Tvaruzkova E, Bulanek R (2013) Top Catal 56:662–671

    Article  CAS  Google Scholar 

  44. Fukudome K, Ikenaga N, Miyake T, Suzuki T (2011) Catal Sci Techol 1:987–998

    Article  CAS  Google Scholar 

  45. Fukudome K, Ikenaga N, Miyake T, Suzuki T (2013) Catal Today 203:10–16

    Article  CAS  Google Scholar 

  46. Fukudome K, Ikenaga N, Miyake T, Suzuki T (2015) J Jpn Petrol Inst 58:153–164

    Article  CAS  Google Scholar 

  47. Xie S, Iglesia E, Bell AT (2000) Langmuir 16:7162–7167

    Article  CAS  Google Scholar 

  48. Hess C, Tzolova-Müller G, Herbert R (2007) J Phys Chem C 111:9471–9479

    Article  CAS  Google Scholar 

  49. Kucherov AV, Ivanov AV, Kucherova TN, Nissenbaum VD, Kustov LM (2003) Catal Today 81:297–305

    Article  CAS  Google Scholar 

  50. Blasco T, Lopez Nieto M (1997) Appl Catal A 157:117–142

    Article  CAS  Google Scholar 

  51. Van der Weij FW (1980) Macromol Chem 181:2541

    Article  Google Scholar 

  52. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  53. Morishige K, Tarui N (2007) J Phys Chem C 111:280

    Article  CAS  Google Scholar 

  54. Groen JC, Peffer LAA, Perez-Ramirez J (2003) Microporous Mesoporous Mater 60:1

    Article  CAS  Google Scholar 

  55. Morishige K, Yasuki T (2010) J Phys Chem C 114:10910

    Article  CAS  Google Scholar 

  56. Ovejero G, Grieken RV, Uguina MA, Serrano DP, Melero JA (1996) Catal Lett 41:69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A part of this work was financially supported by the “High-Tech Research Center (HRC) Project” (2007-2011) by MEXT. KF expresses his thanks for a research assistantship from the HRC project. Discussion with professors T. Mikeya and N. Ikenaga of Kansai University was greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Fukudome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukudome, K., Suzuki, T. Highly Selective Oxidative Dehydrogenation of Propane to Propylene over VOx–SiO2 Catalysts. Catal Surv Asia 19, 172–187 (2015). https://doi.org/10.1007/s10563-015-9192-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-015-9192-4

Keywords

Navigation