Skip to main content
Log in

An Efficient Bifunctional Core–Shell MIL-101(Cr)@MOF-867 Composite to Catalyze Deacetalization–Knoevenagel Tandem Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

By growing one metal organic frameworks (MOFs) on different metal organic frameworks plays an important role in catalytic reaction, but its cooperative catalysis in tandem reaction is an undeveloped field yet, and the reports are very limited. In this work, the material MIL-101(Cr)@MOF-867 with core–shell structure was constructed by growing MOF-867 on the ultra-stable MIL-101(Cr). The synthesized core–shell material had acid–base sites at the same time. Thus, the synergistic catalysis of deacetalization-Knoevenagel tandem reaction showed good catalytic performance and obtained ultra-high yield. In addition, all experiments showed that the core–shell catalyst MIL-101(Cr)@MOF-867 had high stability and under the same conditions, the activity remained still high after five cycles. At the same time, this is the first time to apply MIL-101(Cr)@MOF-867 catalyzing deacetalization-Knoevenagel tandem reaction.

Graphical Abstract

A bifunctional material with core–shell structure was successfully synthesized. The obtained MIL-101(Cr)@MOF-867 with both acid and base sites showed ultra-high conversion in the deacetalization-Knoevenagel tandem reaction, thanks to the Lewis acid sites catalytic deacetalization reaction provided by Cr and Zr clusters and the Brönsted base sites to catalyze Knoevenagel reaction provided by pyridine. Fortunately, after five cycles of experiments, all the characterization showed that it still maintained ultra-high catalytic performance and stability. In addition, this is the first time to catalyze the deacetalization-Knoevenagel tandem reaction by MIL-101(Cr)@MOF-867.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shi WJ, Quan YJ, Lan GX, Ni KY, Song Y, Jiang XM, Wang C, Lin WB (2021) J Am Chem Soc 143:16718–16724

    Article  CAS  PubMed  Google Scholar 

  2. He H, Sun F, Aguila B, Perman JA, Ma SQ, Zhu GS (2016) J Mater Chem A 4:15240–15246

    Article  CAS  Google Scholar 

  3. Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H (2019) Angew Chem Int Ed 58:15188–15205

    Article  CAS  Google Scholar 

  4. An B, Meng YP, Li Z, Hong YH, Wang TT, Wang S, Lin JD, Wang C, Wang C, Wan SL, Wang Y, Lin WB (2019) J Catal 373:37–47

    Article  CAS  Google Scholar 

  5. Chen YZ, Zhou YX, Wang H, Lu J, Uchida T, Xu Q, Yu SH, Jiang HL (2015) ACS Catal 5:2062–2069

    Article  CAS  Google Scholar 

  6. Huang YB, Liang J, Wang XS, Cao R (2017) Chem Soc Rev 46:126–157

    Article  CAS  PubMed  Google Scholar 

  7. Hu Y, Zhang J, Wang Z, Huo H, Jiang Y, Xu X, Lin K (2020) ACS Appl Mater Interfaces 12:36159–36167

    Article  CAS  PubMed  Google Scholar 

  8. Gong W, Chen X, Jiang H, Chu D, Cui Y, Liu Y (2019) J Am Chem Soc 141:7498–7508

    Article  CAS  PubMed  Google Scholar 

  9. Dutta S, Kumari N, Dubbu S, Jang SW, Kumar A, Ohtsu H, Kim J, Cho SH, Kawano M, Lee IS (2020) Angew Chem 59:3416–3422

    Article  CAS  Google Scholar 

  10. Toyao T, Saito M, Horiuchi Y, Matsuoka M (2014). Catal Sci Technol. https://doi.org/10.1039/c3cy00917c

    Article  Google Scholar 

  11. Yang H, Fu L, Wei L, Liang J, Binks BP (2015) J Am Chem Soc 137:1362–1371

    Article  CAS  PubMed  Google Scholar 

  12. Qi L, Chen J, Zhang B, Nie R, Qi Z, Kobayashi T, Bao Z, Yang Q, Ren Q, Sun Q, Zhang Z, Huang W (2020) ACS Catal 10:5707–5714

    Article  CAS  Google Scholar 

  13. Zhang YY, Zhou ML, Bao YS, Yang M, Cui YH, Liu DL, Wu Q, Liu L, Han ZB (2022). Mol Catal. https://doi.org/10.1016/j.mcat.2021.112068

    Article  Google Scholar 

  14. Tang H, Yang M, Li X, Zhou ML, Bao YS, Cui YH, Zhao K, Zhang YY, Han ZB (2021) Inorg Chem Commun 123:108–368

    Article  Google Scholar 

  15. Leng F, Liu H, Ding M, Lin QP, Jiang HL (2018) ACS Catal 8:4583–4590

    Article  CAS  Google Scholar 

  16. Tang H, Zhou ML, Li X, Zhang YY, Han ZB (2020) ChemistrySelect 5:3724–3729

    Article  CAS  Google Scholar 

  17. Yadav M, Xu Q (2013) Chem Commun 49:3327–3329

    Article  CAS  Google Scholar 

  18. Zhao ZS, Zhang Y, Fang T, Han ZB, Liang FS (2020) ACS Appl Nano Mater 3:6316–6320

    Article  CAS  Google Scholar 

  19. Zhang FY, Zhang JL, Zhang BX, Zheng LR, Cheng XY, Wan Q, Han BX, Zhang J (2020) Nat Commun 11:1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li JX, Li X, Tang H, Zhang YY, Han ZB (2019) Inorg Chem Commun 103:82–86

    Article  CAS  Google Scholar 

  21. Tan P, Li GN, Fang RQ, Chen LY, Luque R, Li YW (2017) ACS Catal 7:2948–2955

    Article  CAS  Google Scholar 

  22. Feng X, Hajek J, Jena HS, Wang G-B, Veerapandian SKP, Morent R, Geyter ND, Leyssens K, Hoffman AEJ, Meynen V, Marquez C, Vos DED, Speybroeck VV, Leus K, Voor PVD (2020) J Am Chem Soc 142:3174–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dong XW, Yang Y, Che JX, Jun Z, Li XH, Gao L, Hu YZ, Liu XY (2018) Green Chem 20:4085–4093

    Article  CAS  Google Scholar 

  24. Qi MH, Gao ML, Liu L, Han ZB (2018) Inorg Chem 57:14467–14470

    Article  CAS  PubMed  Google Scholar 

  25. Zhang YY, Li JX, Ding LL, Liu L, Wang SM, Han ZB (2018) Inorg Chem 57:13586–13593

    Article  PubMed  Google Scholar 

  26. Feng D, Gu ZY, Li JR, Jiang HL, Wei ZW, Zhou HC (2012) Angew Chem 51:10307–10310

    Article  CAS  Google Scholar 

  27. Choi S, Oh M (2019) Angew Chem 58:866–871

    Article  CAS  Google Scholar 

  28. Chen L, Wang HF, Li CX, Xu Q (2020) Chem Sci 11:5369–5403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gu Y, Wu YN, Li L, Chen W, Li FT, Kitagawa S (2017) Angew Chem 56:15658–15662

    Article  CAS  Google Scholar 

  30. Puthiaraj P, Yu K, Baeck SH, Ahn WS (2020) Catal Today 352:298–307

    Article  Google Scholar 

  31. Gong YY, Yuan Y, Chen C, Zhang P, Wang JC, Serge Z, Somboon C, Francis V (2019) J Catal 371:106–115

    Article  CAS  Google Scholar 

  32. Zhao MT, Deng K, He LC, Liu Y, Li GD, Zhao HJ, Tang ZY (2014) J Am Chem Soc 136:1738–1741

    Article  CAS  PubMed  Google Scholar 

  33. Gong YY, Yuan Y, Chen C, Zhang P, Wang JC, Anish K, Serge Z, Somboon C, Francis V (2019) J Catal 375:371–379

    Article  CAS  Google Scholar 

  34. Satyabrata S, Sriram M, Suraj Prakash T, Ashutosh M, Priyabrat M, Dharitri R, Kulamani P (2019) Catal Sci Technol 9:6585–6597

    Article  Google Scholar 

  35. Huang YB, Liu SJ, Lin ZJ, Li WJ, Li XF, Cao R (2012) J Catal 292:111–117

    Article  CAS  Google Scholar 

  36. Wang QJ, Nobuko T, Mitsunori K, Xu Q (2018) ACS Catal 8:12041–12045

    Article  CAS  Google Scholar 

  37. Bhadra BN, Vinu A, Serre C et al (2019) MOF-derived carbonaceous materials enriched with nitrogen: Preparation and applications in adsorption and catalysis. Mater Today 25:88–111

    Article  CAS  Google Scholar 

  38. Chong SY, Wang TT, Cheng LC, Lv HY, Ji M (2019) Langmuir: ACS J Surf Colloids 35:495–503

    Article  CAS  Google Scholar 

  39. Imteaz A, Tandra P, Nazmul Abedin K, Mithun S, Jong Sung Y, Sung Hwa J (2017) ACS Appl Mater Interfaces 9:10276–10285

    Article  Google Scholar 

  40. Luis GT, Javier PC, Amirali Y, Jose HM, Pedro T, Inhar I, Felix Z, Daniel M (2019) Angew Chem 58:9512–9516

    Article  Google Scholar 

  41. Cai MK, Li YL, Liu QL, Xue ZQ, Wang HP, Fan YN, Zhu KL, Ke ZF, Su CY, Li GQ (2019) Adv Sci (Weinh) 6:1802365

    Article  PubMed  Google Scholar 

  42. He HB, Li R, Yang ZH, Chai LY, Jin LF, Alhassan SI, Ren LL, Wang HY, Huang L (2021) Catal Today 375:10–29

    Article  CAS  Google Scholar 

  43. Zhu QL, Xu Q (2014) Chem Soc Rev 43:5468–5512

    Article  CAS  PubMed  Google Scholar 

  44. Gong YY, Yuan Y, Chen C, Somboon C, Francis V (2020) J Catal 392:141–149

    Article  CAS  Google Scholar 

  45. Ding D, Jiang Z, Jin JP, Li JJ, Ji D, Zhang YX, Zan L (2019) J Catal 375:21–31

    Article  CAS  Google Scholar 

  46. Lee YR, Do XH, Hwang SS, Baek KY (2020) Catal Today 359:124–132

    Article  Google Scholar 

  47. Li H, Pan Q, Ma Y, Guah X, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S (2016) J Am Chem Soc 138:14783–14788

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Wang YX, Liu L, Wei N, Gao ML, Zhao D, Han Z-B (2018) Inorg Chem 57:2193–2198

    Article  CAS  PubMed  Google Scholar 

  49. Wang Z, Yuan X, Cheng Q, Zhang T, Luo J (2018) New J Chem 42:11610–11615

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by the National Natural Science Foundation of China (Grant No 21671090), Scientific Research Fund of Liaoning Provincial Education Department (Grant No LJKZ0098) and Project supported by Liaoning Provincial Natural Science Foundation of China (Grant No 2021-MS-239).

Author information

Authors and Affiliations

Authors

Contributions

MY: Writing—Original Draft, Software, Investigation, Project administration, Formal analysis, Funding acquisition. YSB: Investigation, Validation. MLZ: Visualization, Software. SW: Participate in some characterization works. YHC, WL, LCL and LXM: Resources, Visualization, Data curation. Zheng-Bo Han: Writing—Review & Editing. YYZ: Conceptualization, Methodology, Resources, Writing-Review & Editing, Supervision.

Corresponding authors

Correspondence to Yu-Yang Zhang or Zheng-Bo Han.

Ethics declarations

Conflict of interest

There are no conflict to declare

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1632 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Bao, YS., Zhou, ML. et al. An Efficient Bifunctional Core–Shell MIL-101(Cr)@MOF-867 Composite to Catalyze Deacetalization–Knoevenagel Tandem Reaction. Catal Lett 153, 3561–3568 (2023). https://doi.org/10.1007/s10562-022-04259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04259-x

Keywords

Navigation