Skip to main content
Log in

Co-based MOF derived metal catalysts: from nano-level to atom-level

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Co-based metal–organic framework (MOF), a kind of porous crystal material composed of Co ions and organic linkers, is a common type of MOF. It not only has the intrinsic properties of MOF, such as structural diversity, functional adjustability, and high surface area, but more importantly, it contains Co metal species, which are considered by many reports to be active catalytic centers for many reactions. Meanwhile, metal catalysts always received wide and sustained attention. The combination of the two types of catalysts can enhance the catalytic performance and achieve the “1 + 1 > 2” effect. In this review, we mainly overview the synthesis methods of Co-based MOF-derived metal catalysts from nano- to atom- level and their applications in the catalysis field in recent years and put forward our own views and prospects for this research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author.

References

  1. Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem Rev. 2020;120(2):1438.

    Article  CAS  Google Scholar 

  2. Bavykina A, Kolobov N, Khan IS, Bau JA, Ramirez A, Gascon J. Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chem Rev. 2020;120(16):8468.

    Article  CAS  Google Scholar 

  3. Wei YS, Zhang M, Zou R, Xu Q. Metal-organic framework-based catalysts with single metal sites. Chem Rev. 2020;120(21):12089.

    Article  CAS  Google Scholar 

  4. Hou C-C, Wang H-F, Li C, Xu Q. From metal–organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ Sci. 2020;13(6):1658.

    Article  CAS  Google Scholar 

  5. Jiao L, Wang Y, Jiang H-L, Xu Q. Metal-organic frameworks as platforms for catalytic applications. Adv Mater. 2018;30(37):1703663.

    Article  Google Scholar 

  6. Meng G, Sun J, Tao L, Ji K, Wang P, Wang Y, Sun X, Cui T, Du S, Chen J, Wang D, Li Y. Ru1Con single-atom alloy for enhancing Fischer-Tropsch synthesis. ACS Catal. 2021;11(3):1886.

    Article  CAS  Google Scholar 

  7. Chen W, Filot IAW, Pestman R, Hensen EJM. Mechanism of Cobalt-Catalyzed CO Hydrogenation: 2. Fischer-Tropsch synthesis. ACS Catal. 2017;7(12):8061.

    Article  CAS  Google Scholar 

  8. Okoye-Chine CG, Moyo M, Hildebrandt D. The effect of hydrophobicity on SiO2–supported Co catalysts in Fischer-Tropsch synthesis. Fuel. 2021;296: 120667.

    Article  CAS  Google Scholar 

  9. Huang Z, Hao L, Ma X, Zhang S, Zhang R, Yue K, Wang Y. A facile reaction strategy for the synthesis of MOF-based pine-needle-like nanocluster hierarchical structure for efficient overall water splitting. Inorg Chem. 2021;60(6):4047.

    Article  CAS  Google Scholar 

  10. Abdelkader-Fernández VK, Fernandes DM, Balula SS, Cunha-Silva L, Freire C. Oxygen evolution reaction electrocatalytic improvement in POM@ZIF nanocomposites: a bidirectional synergistic effect. ACS Appl Energy Mater. 2020;3(3):2925.

    Article  Google Scholar 

  11. Wen H, Zhang S, Yu T, Yi Z, Guo R. ZIF-67-based catalysts for oxygen evolution reaction. Nanoscale. 2021;13(28):12058.

    Article  CAS  Google Scholar 

  12. Wang XX, Cullen DA, Pan Y-T, Hwang S, Wang M, Feng Z, Wang J, Engelhard MH, Zhang H, He Y, Shao Y, Su D, More KL, Spendelow JS, Wu G. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv Mater. 2018;30(11):1706758.

    Article  Google Scholar 

  13. Peng H, Liu F, Liu X, Liao S, You C, Tian X, Nan H, Luo F, Song H, Fu Z, Huang P. Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application. ACS Catal. 2014;4(10):3797.

    Article  CAS  Google Scholar 

  14. Chen Y, Gao R, Ji S, Li H, Tang K, Jiang P, Hu H, Zhang Z, Hao H, Qu Q, Liang X, Chen W, Dong J, Wang D, Li Y. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: enhanced oxygen reduction performance. Angew Chem Int Ed. 2021;60(6):3212.

    Article  CAS  Google Scholar 

  15. Osmieri L, Monteverde Videla AHA, Ocón P, Specchia S. Kinetics of oxygen electroreduction on Me–N–C (Me = Fe Co, Cu) catalysts in acidic medium: insights on the effect of the transition metal. J Phys Chem C. 2017;121(33):17796.

    Article  CAS  Google Scholar 

  16. Xu H, Cheng D, Cao D, Zeng XC. A universal principle for a rational design of single-atom electrocatalysts. Nat Catal. 2018;1(5):339.

    Article  CAS  Google Scholar 

  17. Usman M, Humayun M, Garba MD, Ullah L, Zeb Z, Helal A, Suliman MH, Alfaifi BY, Iqbal N, Abdinejad M, Tahir AA, Ullah H. Electrochemical reduction of CO2: a review of cobalt based catalysts for carbon dioxide conversion to fuels. Nanomaterials. 2021;11(8):2029.

    Article  CAS  Google Scholar 

  18. Song X, Zhang H, Yang Y, Zhang B, Zuo M, Cao X, Sun J, Lin C, Li X, Jiang Z. Bifunctional nitrogen and cobalt codoped hollow carbon for electrochemical syngas production. Adv Sci. 2018;5(7):1800177.

    Article  Google Scholar 

  19. Geng Z, Cao Y, Chen W, Kong X, Liu Y, Yao T, Lin Y. Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction. Appl Catal B. 2019;240:234.

    Article  CAS  Google Scholar 

  20. Lou Y, Xu J, Zhang Y, Pan C, Dong Y, Zhu Y. Metal-support interaction for heterogeneous catalysis: from nanoparticles to single atoms. Mater Today Nano. 2020;12: 100093.

    Article  Google Scholar 

  21. James TE, Hemmingson SL, Campbell CT. Energy of supported metal catalysts: from single atoms to large metal nanoparticles. ACS Catal. 2015;5(10):5673.

    Article  CAS  Google Scholar 

  22. Wang H, Lu J. A review on particle size effect in metal-catalyzed heterogeneous reactions. Chin J Chem. 2020;38(11):1422.

    Article  CAS  Google Scholar 

  23. Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118(10):4981.

    Article  CAS  Google Scholar 

  24. Zhang L, Zhou M, Wang A, Zhang T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem Rev. 2020;120(2):683.

    Article  CAS  Google Scholar 

  25. Pitzalis E, Psaro R, Evangelisti C. From metal vapor to supported single atoms, clusters and nanoparticles: recent advances to heterogeneous catalysts. Inorg Chim Acta. 2022;533: 120782.

    Article  CAS  Google Scholar 

  26. Han X, Ling X, Wang Y, Ma T, Zhong C, Hu W, Deng Y. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew Chem Int Ed. 2019;58(16):5359.

    Article  CAS  Google Scholar 

  27. Kou Z, Zang W, Ma Y, Pan Z, Mu S, Gao X, Tang B, Xiong M, Zhao X, Cheetham AK, Zheng L, Wang J. Cage-confinement pyrolysis route to size-controlled molybdenum-based oxygen electrode catalysts: from isolated atoms to clusters and nanoparticles. Nano Energy. 2020;67: 104288.

    Article  CAS  Google Scholar 

  28. Habib NR, Asedegbega-Nieto E, Taddesse AM, Diaz I. Non-noble MNP@MOF materials: synthesis and applications in heterogeneous catalysis. Dalton Trans. 2021;50(30):10340.

    Article  CAS  Google Scholar 

  29. Luo L, Jin R. Atomically precise metal nanoclusters meet metal-organic frameworks. iScience. 2021;24(10):103206.

    Article  CAS  Google Scholar 

  30. Buceta D, Piñeiro Y, Vázquez-Vázquez C, Rivas J, López-Quintela MA. Metallic clusters: theoretical background, properties and synthesis in microemulsions. Catalysts. 2014;4(4):356.

    Article  Google Scholar 

  31. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668.

    Article  CAS  Google Scholar 

  32. Schauermann S, Hoffmann J, Johánek V, Hartmann J, Libuda J, Freund H-J. Catalytic activity and poisoning of specific sites on supported metal nanoparticles. Angew Chem Int Ed. 2002;41(14):2532.

    Article  CAS  Google Scholar 

  33. Janssens TVW, Clausen BS, Hvolbæk B, Falsig H, Christensen CH, Bligaard T, Nørskov JK. Insights into the reactivity of supported Au nanoparticles: combining theory and experiments. Top Catal. 2007;44(1):15.

    Article  CAS  Google Scholar 

  34. Wu J, Li P, Pan Y-T, Warren S, Yin X, Yang H. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem Soc Rev. 2012;41(24):8066.

    Article  CAS  Google Scholar 

  35. Taylor KJ, Pettiette-Hall CL, Cheshnovsky O, Smalley RE. Ultraviolet photoelectron spectra of coinage metal clusters. J Chem Phys. 1992;96(4):3319.

    Article  CAS  Google Scholar 

  36. Boronat M, Leyva-Pérez A, Corma A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold. Acc Chem Res. 2014;47(3):834.

    Article  CAS  Google Scholar 

  37. Fernández EM, Soler JM, Garzón IL, Balbás LC. Trends in the structure and bonding of noble metal clusters. Phys Rev B. 2004;70(16): 165403.

    Article  Google Scholar 

  38. Zhang Q, Guan J. Single-atom catalysts for electrocatalytic applications. Adv Funct Mater. 2020;30(31):2000768.

    Article  CAS  Google Scholar 

  39. Kou Z, Zang W, Wang P, Li X, Wang J. Single atom catalysts: a surface heterocompound perspective. Nanoscale Horiz. 2020;5(5):757.

    Article  CAS  Google Scholar 

  40. Xi J, Jung HS, Xu Y, Xiao F, Bae JW, Wang S. Single-atom catalysts: synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Adv Funct Mater. 2021;31(12):2170081.

    Article  Google Scholar 

  41. Zhang X, Sun X, Xu D, Tao X, Dai P, Guo Q, Liu X. Synthesis of MOF-derived Co@C composites and application for efficient hydrolysis of sodium borohydride. Appl Surf Sci. 2019;469:764.

    Article  CAS  Google Scholar 

  42. Zhou L, Meng J, Li P, Tao Z, Mai L, Chen J. Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane. Mater Horiz. 2017;4(2):268.

    Article  CAS  Google Scholar 

  43. Zacho SL, Mielby J, Kegnæs S. Hydrolytic dehydrogenation of ammonia borane over ZIF-67 derived Co nanoparticle catalysts. Catal Sci Technol. 2018;8(18):4741.

    Article  CAS  Google Scholar 

  44. Chen S, Ling L-L, Jiang S-F, Jiang H. Selective hydrogenation of nitroarenes under mild conditions by the optimization of active sites in a well defined Co@NC catalyst. Green Chem. 2020;22(17):5730.

    Article  CAS  Google Scholar 

  45. Sun X, Olivos-Suarez AI, Oar-Arteta L, Rozhko E, Osadchii D, Bavykina A, Kapteijn F, Gascon J. Metal-organic framework mediated cobalt/nitrogen-doped carbon hybrids as efficient and chemoselective catalysts for the hydrogenation of nitroarenes. ChemCatChem. 2017;9(10):1854.

    Article  CAS  Google Scholar 

  46. Chen M, Xiong R, Cui X, Wang Q, Liu X. SiO2-encompassed Co@N-Doped porous carbon assemblies as recyclable catalysts for efficient hydrolysis of ammonia borane. Langmuir. 2019;35(3):671.

    Article  CAS  Google Scholar 

  47. Zhang C, Guo X, Yuan Q, Zhang R, Chang Q, Li K, Xiao B, Liu S, Ma C, Liu X, Xu Y, Wen X, Yang Y, Li Y. Ethyne-reducing metal-organic frameworks to control fabrications of core/shell nanoparticles as catalysts. ACS Catal. 2018;8(8):7120.

    Article  CAS  Google Scholar 

  48. Chen H, Shen K, Mao Q, Chen J, Li Y. Nanoreactor of MOF-derived yolk-shell Co@C–N: precisely controllable structure and enhanced catalytic activity. ACS Catal. 2018;8(2):1417.

    Article  Google Scholar 

  49. Chen Z, Wu R, Liu Y, Ha Y, Guo Y, Sun D, Liu M, Fang F. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv Mater. 2018;30(30):1802011.

    Article  Google Scholar 

  50. Wang R, Yan T, Han L, Chen G, Li H, Zhang J, Shi L, Zhang D. Tuning the dimensions and structures of nitrogen-doped carbon nanomaterials derived from sacrificial g-C3N4/metal–organic frameworks for enhanced electrocatalytic oxygen reduction. J Mater Chem A. 2018;6(14):5752.

    Article  CAS  Google Scholar 

  51. Guo H, Feng Q, Zhu J, Xu J, Li Q, Liu S, Xu K, Zhang C, Liu T. Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal–organic framework for tri-functional ORR, OER and HER electrocatalysis. J Mater Chem A. 2019;7(8):3664.

    Article  CAS  Google Scholar 

  52. Tong Y, Xue G, Wang H, Liu M, Wang J, Hao C, Zhang X, Wang D, Shi X, Liu W, Li G, Tang Z. Interfacial coupling between noble metal nanoparticles and metal–organic frameworks for enhanced catalytic activity. Nanoscale. 2018;10(35):16425.

    Article  CAS  Google Scholar 

  53. Yu H, Jing Y, Du C-F, Wang J. Tuning the reversible chemisorption of hydroxyl ions to promote the electrocatalysis on ultrathin metal-organic framework nanosheets. J Energy Chem. 2022;65:71.

    Article  CAS  Google Scholar 

  54. Ding S, Zhang C, Liu Y, Jiang H, Xing W, Chen R. Pd nanoparticles supported on N-doped porous carbons derived from ZIF-67: enhanced catalytic performance in phenol hydrogenation. J Ind Eng Chem. 2017;46:258.

    Article  CAS  Google Scholar 

  55. Zhou A, Guo R-M, Zhou J, Dou Y, Chen Y, Li J-R. Pd@ZIF-67 derived recyclable Pd-Based catalysts with hierarchical pores for high-performance heck reaction. ACS Sustain Chem Eng. 2018;6(2):2103.

    Article  CAS  Google Scholar 

  56. Zhang W, Wu W, Long Y, Wang F, Ma J. Co-Ag alloy protected by nitrogen doped carbon as highly efficient and chemoselective catalysts for the hydrogenation of halogenated nitrobenzenes. J Colloid Interface Sci. 2018;522:217.

    Article  CAS  Google Scholar 

  57. Jiang P, Chen J, Wang C, Yang K, Gong S, Liu S, Lin Z, Li M, Xia G, Yang Y, Su J, Chen Q. Tuning the activity of carbon for electrocatalytic hydrogen evolution via an iridium-cobalt alloy core encapsulated in nitrogen-doped carbon cages. Adv Mater. 2018;30(9):1705324.

    Article  Google Scholar 

  58. Li D, Zong Z, Tang Z, Liu Z, Chen S, Tian Y, Wang X. Total water splitting catalyzed by Co@Ir core-shell nanoparticles encapsulated in nitrogen-doped porous carbon derived from metal-organic frameworks. ACS Sustain Chem Eng. 2018;6(4):5105.

    Article  CAS  Google Scholar 

  59. Chen L-N, Li H-Q, Yan M-W, Yuan C-F, Zhan W-W, Jiang Y-Q, Xie Z-X, Kuang Q, Zheng L-S. Ternary alloys encapsulated within different mofs via a self-sacrificing template process: a potential platform for the investigation of size-selective catalytic performances. Small. 2017;13(33):1700683.

    Article  Google Scholar 

  60. Xiao Z, Xu F. A two-dimensional zeolitic imidazolate framework loaded with an acrylate-substituted oxoiron cluster as an efficient electrocatalyst for the oxygen evolution reaction. New J Chem. 2022;46(23):11095.

    Article  CAS  Google Scholar 

  61. Li X-H, He P, Wang T, Zhang X-W, Chen W-L, Li Y-G. Keggin-type polyoxometalate-based ZIF-67 for enhanced photocatalytic nitrogen fixation. Chemsuschem. 2020;13(10):2769.

    Article  CAS  Google Scholar 

  62. Li L, Fang Z-B, Deng W, Yi J-D, Wang R, Liu T-F. Precise construction of stable bimetallic metal–organic frameworks with single-site Ti(IV) incorporation in nodes for efficient photocatalytic oxygen evolution. CCS Chem. 2022;4(8):2782.

    Article  CAS  Google Scholar 

  63. Xiang W, Zhang Y, Lin H, Liu C-J. Nanoparticle/metal–organic framework composites for catalytic applications: current status and perspective. Molecules. 2017;22(12):2103.

    Article  Google Scholar 

  64. Zheng F, Fan Y, Chen W. Homogeneous distribution of Pt16(C4O4SH5)26 clusters in ZIF-67 for efficient hydrogen generation and oxygen reduction. ACS Appl Mater Interfaces. 2021;13(32):38170.

    Article  CAS  Google Scholar 

  65. Fang Y, Xiao Z, Li J, Lollar C, Liu L, Lian X, Yuan S, Banerjee S, Zhang P, Zhou H-C. Formation of a highly reactive cobalt nanocluster crystal within a highly negatively charged porous coordination cage. Angew Chem Int Ed. 2018;57(19):5283.

    Article  CAS  Google Scholar 

  66. Gao L, Chen S, Cai R, Zhao Q, Zhao X, Yang D. DUT-58 (Co) derived synthesis of co clusters as efficient oxygen reduction electrocatalyst for zinc-air battery. Global Chall. 2018;2(1):1700086.

    Article  Google Scholar 

  67. Li H, Zhang M, Zhou W, Duan J, Jin W. Ultrathin 2D catalysts with N-coordinated single Co atom outside Co cluster for highly efficient Zn-air battery. Chem Eng J. 2021;421: 129719.

    Article  CAS  Google Scholar 

  68. Zou Q, Xu F, Ma J, Zhang H, Wang Y. Carboxylate-assisted ZIF-derived Co nanoclusters anchoring hierarchically porous carbon as high-efficient zinc-air batteries cathode catalysts. J Alloys Compd. 2022;923: 166393.

    Article  CAS  Google Scholar 

  69. Zang W, Sumboja A, Ma Y, Zhang H, Wu Y, Wu S, Wu H, Liu Z, Guan C, Wang J, Pennycook SJ. Single Co atoms anchored in porous N-doped carbon for efficient zinc−air battery cathodes. ACS Catal. 2018;8(10):8961.

    Article  CAS  Google Scholar 

  70. Wang X, Chen Z, Zhao X, Yao T, Chen W, You R, Zhao C, Wu G, Wang J, Huang W, Yang J, Hong X, Wei S, Wu Y, Li Y. Regulation of coordination number over single co sites: triggering the efficient electroreduction of CO2. Angew Chem Int Ed. 2018;57(7):1944.

    Article  CAS  Google Scholar 

  71. Li X, Jiao Y, Cui Y, Dai C, Ren P, Song C, Ma X. Synergistic catalysis of the synthesis of ammonia with Co-based catalysts and plasma: from nanoparticles to a single atom. ACS Appl Mater Interfaces. 2021;13(44):52498.

    Article  CAS  Google Scholar 

  72. Wan J, Zhao Z, Shang H, Peng B, Chen W, Pei J, Zheng L, Dong J, Cao R, Sarangi R, Jiang Z, Zhou D, Zhuang Z, Zhang J, Wang D, Li Y. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1–P1N3 interfacial structure for promoting catalytic performance. J Am Chem Soc. 2020;142(18):8431.

    Article  CAS  Google Scholar 

  73. Yuan S, Zhang J, Hu L, Li J, Li S, Gao Y, Zhang Q, Gu L, Yang W, Feng X, Wang B. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew Chem Int Ed. 2021;60(40):21685.

    Article  CAS  Google Scholar 

  74. Sun X, Olivos-Suarez AI, Osadchii D, Romero MJV, Kapteijn F, Gascon J. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. J Catal. 2018;357:20.

    Article  Google Scholar 

  75. Sun X, Sun S, Gu S, Liang Z, Zhang J, Yang Y, Deng Z, Wei P, Peng J, Xu Y, Fang C, Li Q, Han J, Jiang Z, Huang Y. High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy. 2019;61:245.

    Article  CAS  Google Scholar 

  76. Wang X, Li P, Li Z, Chen W, Zhou H, Zhao Y, Wang X, Zheng L, Dong J, Lin Y, Zheng X, Yan W, Yang J, Yang Z, Qu Y, Yuan T, Wu Y, Li Y. 2D MOF induced accessible and exclusive Co single sites for an efficient O-silylation of alcohols with silanes. Chem Commun. 2019;55(46):6563.

    Article  CAS  Google Scholar 

  77. Dilpazir S, He H, Li Z, Wang M, Lu P, Liu R, Xie Z, Gao D, Zhang G. Cobalt single atoms immobilized N-doped carbon nanotubes for enhanced bifunctional catalysis toward oxygen reduction and oxygen evolution reactions. ACS Appl Energy Mater. 2018;1(7):3283.

    Article  CAS  Google Scholar 

  78. He Y, Hwang S, Cullen DA, Uddin MA, Langhorst L, Li B, Karakalos S, Kropf AJ, Wegener EC, Sokolowski J, Chen M, Myers D, Su D, More KL, Wang G, Litster S, Wu G. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy Environ Sci. 2019;12(1):250.

    Article  CAS  Google Scholar 

  79. Zhou L, Zhou P, Zhang Y, Liu B, Gao P, Guo S. 3D star-like atypical hybrid MOF derived single-atom catalyst boosts oxygen reduction catalysis. J Energy Chem. 2021;55:355.

    Article  CAS  Google Scholar 

  80. Yang H, Lin Q, Wu Y, Li G, Hu Q, Chai X, Ren X, Zhang Q, Liu J, He C. Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy. 2020;70: 104454.

    Article  CAS  Google Scholar 

  81. Shao S, Yang Y, Sun K, Yang S, Li A, Yang F, Luo X, Hao S, Ke Y. Electron-rich ruthenium single-atom alloy for aqueous levulinic acid hydrogenation. ACS Catal. 2021;11(19):12146.

    Article  CAS  Google Scholar 

  82. Zhao R, Liang Z, Gao S, Yang C, Zhu B, Zhao J, Qu C, Zou R, Xu Q. Puffing up energetic metal-organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites. Angew Chem Int Ed. 2019;58(7):1975.

    Article  CAS  Google Scholar 

  83. Rong C, Shen X, Wang Y, Thomsen L, Zhao T, Li Y, Lu X, Amal R, Zhao C. Electronic structure engineering of single-atom Ru sites via Co–N4 sites for bifunctional pH-universal water splitting. Adv Mater. 2022;34(21):2110103.

    Article  CAS  Google Scholar 

  84. Xiao M, Zhu J, Li S, Li G, Liu W, Deng Y-P, Bai Z, Ma L, Feng M, Wu T, Su D, Lu J, Yu A, Chen Z. 3d-orbital occupancy regulated Ir-Co atomic pair toward superior bifunctional oxygen electrocatalysis. ACS Catal. 2021;11(14):8837.

    Article  CAS  Google Scholar 

  85. Yang J, Zeng D, Li J, Dong L, Ong W-J, He Y. A highly efficient Fenton-like catalyst based on isolated diatomic Fe-Co anchored on N-doped porous carbon. Chem Eng J. 2021;404: 126376.

    Article  CAS  Google Scholar 

  86. Wang J, Huang Z, Liu W, Chang C, Tang H, Li Z, Chen W, Jia C, Yao T, Wei S, Wu Y, Li Y. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J Am Chem Soc. 2017;139(48):17281.

    Article  CAS  Google Scholar 

  87. Zhang D, Chen W, Li Z, Chen Y, Zheng L, Gong Y, Li Q, Shen R, Han Y, Cheong W-C, Gu L, Li Y. Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction. Chem Commun. 2018;54(34):4274.

    Article  CAS  Google Scholar 

  88. Wang J, Liu W, Luo G, Li Z, Zhao C, Zhang H, Zhu M, Xu Q, Wang X, Zhao C, Qu Y, Yang Z, Yao T, Li Y, Lin Y, Wu Y, Li Y. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ Sci. 2018;11(12):3375.

    Article  CAS  Google Scholar 

  89. Wei Y-S, Sun L, Wang M, Hong J, Zou L, Liu H, Wang Y, Zhang M, Liu Z, Li Y, Horike S, Suenaga K, Xu Q. Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach. Angew Chem Int Ed. 2020;59(37):16013.

    Article  CAS  Google Scholar 

  90. Hu B, Huang A, Zhang X, Chen Z, Tu R, Zhu W, Zhuang Z, Chen C, Peng Q, Li Y. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021;14(10):3482.

    Article  CAS  Google Scholar 

  91. Luo Y, Zhang J, Chen J, Chen Y, Zhang C, Luo Y, Wang G, Wang R. Bi-functional electrocatalysis through synergetic coupling strategy of atomically dispersed Fe and Co active sites anchored on 3D nitrogen-doped carbon sheets for Zn-air battery. J Catal. 2021;397:223.

    Article  CAS  Google Scholar 

  92. Wang Y, Wan X, Liu J, Li W, Li Y, Guo X, Liu X, Shang J, Shui J. Catalysis stability enhancement of Fe/Co dual-atom site via phosphorus coordination for proton exchange membrane fuel cell. Nano Res. 2022;15(4):3082.

    Article  CAS  Google Scholar 

  93. Zhang L, Fischer JMTA, Jia Y, Yan X, Xu W, Wang X, Chen J, Yang D, Liu H, Zhuang L, Hankel M, Searles DJ, Huang K, Feng S, Brown CL, Yao X. Coordination of atomic Co–Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J Am Chem Soc. 2018;140(34):10757.

    Article  CAS  Google Scholar 

  94. Liu M, Xu Q, Miao Q, Yang S, Wu P, Liu G, He J, Yu C, Zeng G. Atomic Co–N4 and Co nanoparticles confined in COF@ZIF-67 derived core–shell carbon frameworks: bifunctional non-precious metal catalysts toward the ORR and HER. J Mater Chem A. 2022;10(1):228.

    Article  Google Scholar 

  95. Yang X, Wang Y, Wang X, Mei B, Luo E, Li Y, Meng Q, Jin Z, Jiang Z, Liu C, Ge J, Xing W. CO-tolerant PEMFC anodes enabled by synergistic catalysis between iridium single-atom sites and nanoparticles. Angew Chem Int Ed. 2021;60(50):26177.

    Article  CAS  Google Scholar 

  96. Shen Q, Jin H, Li P, Yu X, Zheng L, Song W, Cao C. Breaking the activity limitation of iridium single-atom catalyst in hydrogenation of quinoline with synergistic nanoparticles catalysis. Nano Res. 2022;15(6):5024.

    Article  CAS  Google Scholar 

  97. Zheng B, Xu J, Song J, Wu H, Mei X, Zhang K, Han W, Wu W, He M, Han B. Nanoparticles and single atoms of cobalt synergistically enabled low-temperature reductive amination of carbonyl compounds. Chem Sci. 2022;13(31):9047.

    Article  CAS  Google Scholar 

  98. Ma Z, Liu S, Tang N, Song T, Motokura K, Shen Z, Yang Y. Coexistence of Fe nanoclusters boosting fe single atoms to generate singlet oxygen for efficient aerobic oxidation of primary amines to imines. ACS Catal. 2022;12(9):5595.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Natural Science research project of Universities in Anhui Province (KJ2021ZD0001) and the Natural Science Foundation of Anhui Province (2208085MB20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-Zhou Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, YX., Zhou, YT. & Zhu, MZ. Co-based MOF derived metal catalysts: from nano-level to atom-level. Tungsten 5, 201–216 (2023). https://doi.org/10.1007/s42864-022-00197-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00197-8

Keywords

Navigation