Skip to main content
Log in

Direct Synthesis of α-Methoxyphenylacetic Acid Via Tandem Catalysis from Styrene and Methanol with Co3O4/CuCo2O4 Heterostructures

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Tandem catalysis as an exciting research frontier has recently aroused wide attention due to the eliminated intermediate work-up, improved production efficiency, decreased production cost and reduced waste discharge. The main challenge in this tandem catalytic approach is the exploiting of a bifunctional catalyst that can be effective for both reactions processed under the same reaction conditions in a single reactor. We herein report for the first time that in the presence of in-situ generated Co3O4/CuCo2O4 heterostructures (CCHS) as a heterogeneous catalyst, α-methoxyphenylacetic acid (MTPAA) can be produced via tandem catalysis from styrene and methanol by integrating the styrene epoxidation and subsequent nucleophilic ring-opening of styrene oxide (SO). The styrene conversion of 94.8% accompanied with a selectivity of 62.5% to MTPAA was achieved under the optimal reaction conditions. Consequently, a simple heterogeneous approach for the highly efficient and selective production of MTPAA has been established. This study highlights the great potential of bifunctional heterostructures composed of earth-abundant elements for the synthesis of valuable chemicals via tandem conversion of styrene and subsequent diverse SO ring-opening reactions.

Graphical Abstract

In the presence of in-situ generated Co3O4/CuCo2O4 heterostructures as a heterogeneous catalyst, α-methoxyphenylacetic acid can be produced via tandem catalysis from styrene and methanol by integrating the styrene epoxidation and subsequent nucleophilic ring-opening of styrene oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2.

Similar content being viewed by others

References

  1. Scharinger F, Pálvölgyi ÁM, Weisz M, Weil M, Stanetty C, Schnürch M, Bica-Schröder K (2022) Angew Chem Int Ed 61:e202202189

    Article  CAS  Google Scholar 

  2. Sun G, Li MM-J, Nakagawa K, Li G, Wu T-S, Peng Y-K (2022) Appl Catal B 313: 121461

  3. Cao H, Qian R, Yu L (2020) Catal Sci Technol 10:3113–3121

    Article  CAS  Google Scholar 

  4. Liu J, Wang H, Jian P, Wang L (2022) Catal Lett 152:3365–3374

    Article  CAS  Google Scholar 

  5. Otto T, Zhou X, Zones SI, Iglesia E (2022) J Catal 410:206–220

    Article  CAS  Google Scholar 

  6. Yang Y, Fan X, Cao H, Chu S, Zhang X, Xu Q, Yu L (2018) Catal Sci Technol 8:5017–5023

    Article  CAS  Google Scholar 

  7. Liu J, Wang W, Wang L, Jian P (2023) J Colloid Interface Sci 630:804–812

    Article  CAS  PubMed  Google Scholar 

  8. Hamdy MS, Al-Zaqri N, Sahlabji T, Eissa M, Haija MA, Alhanash AM, Alsalme A, Alharthi FA, Abboud M (2021) Catal Lett 151:1612–1622

    Article  CAS  Google Scholar 

  9. Wang C, Luo L, Yamamoto H (2016) Acc Chem Res 49:193–204

    Article  CAS  PubMed  Google Scholar 

  10. Magre M, Paffenholz E, Maity B, Cavallo L, Rueping M (2020) J Am Chem Soc 142:14286–14294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan Z, Ma Z, Deng J, Luo G (2021) Chem Eng Sci 242:116746

    Article  CAS  Google Scholar 

  12. Jing X, Li Z, Geng W, Lv H, Chi Y, Hu C (2021) J Mater Chem A 9:8480–8488

    Article  CAS  Google Scholar 

  13. Dai Y, Tüysüz H (2019) Chemsuschem 12:2587–2592

    Article  CAS  PubMed  Google Scholar 

  14. Cruz MC, Sánchez-Velandia JE, Causíl S, Villa AL (2021) Catal Lett 151:2279–2290

    Article  CAS  Google Scholar 

  15. Ji P, Feng X, Oliveres P, Li Z, Murakami A, Wang C, Lin W (2019) J Am Chem Soc 141:14878–14888

    Article  CAS  PubMed  Google Scholar 

  16. Liu N, Xie Y-F, Wang C, Li S-J, Wei D, Li M, Dai B (2018) ACS Catal 8:9945–9957

    Article  CAS  Google Scholar 

  17. Anbu N, Dhakshinamoorthy A (2018) J Ind Eng Chem 58:9–17

    Article  CAS  Google Scholar 

  18. Wan N, Tian J, Zhou X, Wang H, Cui B, Han W, Chen Y (2019) Adv Synth Catal 361:4651–4655

    Article  CAS  Google Scholar 

  19. Calmanti R, Selva M, Perosa A (2021) Green Chem 23:1921–1941

    Article  CAS  Google Scholar 

  20. Hosseinzadeh SZ, Babazadeh M, Shahverdizadeh GH (2020) Es’haghi M, Hosseinzadeh-Khanmiri R. Catal Lett 150:2784–2791

    Article  CAS  Google Scholar 

  21. Song T, Wang C, Zhang Y, Shi X, Li Y, Yang Y (2022) Appl Catal B 304:120964

    Article  CAS  Google Scholar 

  22. Zhang S, Xia Z, Zou Y, Cao F, Liu Y, Ma Y, Qu Y (2019) J Am Chem Soc 141:11353–11357

    Article  CAS  PubMed  Google Scholar 

  23. Tang H, Zhou M-L, Li X, Zhang Y-Y, Han Z-B (2020) ChemistrySelect 5:3724–3729

    Article  CAS  Google Scholar 

  24. Zodge AD, Bombicz P, Székely E, Pokol G, Madarász J (2017) Thermochim Acta 648:23–31

    Article  CAS  Google Scholar 

  25. Sakurai R, Yuzawa A, Sakai K (2008) Tetrahedron 19:1622–1625

    Article  CAS  Google Scholar 

  26. Reeve W, Compere EL (1961) J Am Chem Soc 83:2755–2759

    Article  CAS  Google Scholar 

  27. Manzer Manhas F, Kumar J, Raheem S, Thakur P, Rizvi MA, Shah BA (2021) ChemPhotoChem 5:235–239

    Article  CAS  Google Scholar 

  28. Ahuja G, Kumar R, Mathur P (2012) J Mol Struct 1011:166–171

    Article  CAS  Google Scholar 

  29. Marchetti F, Pettinari C, Pettinari R, Cerquetella A, Di Nicola C, Macchioni A, Zuccaccia D, Monari M, Piccinelli F (2008) Inorg Chem 47:11593–11603

    Article  CAS  PubMed  Google Scholar 

  30. Dar MA, Ahsanulhaq Q, Kim YS, Sohn JM, Kim WB, Shin HS (2009) Appl Surf Sci 255:6279–6284

    Article  CAS  Google Scholar 

  31. Liu J, Meng R, Li J, Jian P, Wang L, Jian R (2019) Appl Catal B 254:214–222

    Article  CAS  Google Scholar 

  32. Liu J, Chen T, Jian P, Wang L (2018) Chin J Catal 39:1942–1950

    Article  CAS  Google Scholar 

  33. Aadil M, Zulfiqar S, Shahid M, Haider S, Shakir I, Warsi MF (2020) J Alloys Compd 844:156062

    Article  CAS  Google Scholar 

  34. Liu J, Ji X, Shi J, Wang L, Jian P, Yan X, Wang D (2022) Catal Sci Technol 12:1499–1511

    Article  CAS  Google Scholar 

  35. Gu X, Liu Z, Li M, Tian J, Feng L (2021) Appl Catal B 297:120462

    Article  CAS  Google Scholar 

  36. Liu J, Li J, Ye R, Yan X, Wang L, Jian P (2020) Chin J Catal 41:1217–1229

    Article  CAS  Google Scholar 

  37. Moradi M, Hasanvandian F, Isari AA, Hayati F, Kakavandi B, Setayesh SR (2021) Appl Catal B 285:119838

    Article  CAS  Google Scholar 

  38. Liu J, Meng R, Wang H, Jian P (2020) J Colloid Interface Sci 579:221–232

    Article  CAS  PubMed  Google Scholar 

  39. Rezaee S, Shahrokhian S (2019) Appl Catal B 244:802–813

    Article  CAS  Google Scholar 

  40. Liu J, Wang W, Jian P, Wang L, Yan X (2022) J Colloid Interface Sci 614:102–109

    Article  CAS  PubMed  Google Scholar 

  41. Cheng Y, Xiao X, Guo X, Yao H, Pang H (2020) ACS Sustain Chem Eng 8:8675–8680

    Article  CAS  Google Scholar 

  42. Liu J, Wang H, Wang L, Jian P, Yan X (2022) Appl Catal B 305:121050

    Article  CAS  Google Scholar 

  43. Yang H, Jia L, Zhang Z, Xu B, Liu Z, Zhang Q, Cao Y, Nan Z, Zhang M, Ohno T (2022) J Catal 405:74–83

    Article  CAS  Google Scholar 

  44. Rong S, Zhang P, Liu F, Yang Y (2018) ACS Catal 8:3435–3446

    Article  CAS  Google Scholar 

  45. Hou J, Li Y, Liu L, Ren L, Zhao X (2013) J Mater Chem A 1:6736–6741

    Article  CAS  Google Scholar 

  46. Chen J, Wang M, Han J, Guo R (2020) J Colloid Interface Sci 562:313–321

    Article  CAS  PubMed  Google Scholar 

  47. Liu J, Meng R, Jian P, Jian R (2020) ACS Sustainable Chem Eng 8:16791–16802

    Article  CAS  Google Scholar 

  48. Sebastian J, Jinka KM, Jasra RV (2006) J Catal 244:208–218

    Article  CAS  Google Scholar 

  49. He J, Zhai Q, Zhang Q, Deng W, Wang Y (2013) J Catal 299:53–66

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22208284) and the Natural Science Foundation of Jiangsu Province (BK20200956). The authors acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangyong Liu or Panming Jian.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10562_2022_4249_MOESM1_ESM.docx

Supplementary data associated with this article can be found in the online version at…. Supplementary file1 (DOCX 1308 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Lu, Y. & Jian, P. Direct Synthesis of α-Methoxyphenylacetic Acid Via Tandem Catalysis from Styrene and Methanol with Co3O4/CuCo2O4 Heterostructures. Catal Lett 153, 3504–3515 (2023). https://doi.org/10.1007/s10562-022-04249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04249-z

Keywords

Navigation