Skip to main content
Log in

Preparation of Hydrocarbon Rich Biofuel from Cracking of Waste Cooking Oil Catalyzed by Basic Mesoporous Molecular Sieve Me-KIT-6

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Bacic mesoporous molecular sieve Me-KIT-6 (Me = K, Ca, Mg, Ba) was prepared by hydrothermal synthesis through doping basic metal elements, and was used to the cracking reaction of waste cooking oil to produce biofuel. The synthesized molecular sieves were characterized by XRD, N2 adsorption/desorption, TEM and CO2-TPD. The effects of the structure and alkalinity of molecular sieves on the activity and selectivity of catalysts were studied. It is found that the three-dimensional cubic mesoporous structure and high alkali content of molecular sieves can improve the catalytic activity and selectivity, and greatly improve the quality of biofuels. The results show that Mg-KIT-6 mesoporous molecular sieve with n(Mg): n(ethyl orthosilicate) = 1:30 has better catalytic performance. The yield of liquid product can reach 62.7%, of which the content of hydrocarbons is the highest, up to 75.74%. The distribution of liquid biofuels is also very concentrated, mainlyC14–C18 hydrocarbons. The catalyst also has excellent catalytic stability.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Attari A, Abbaszadeh-Mayvan A, Taghizadeh-Alisaraei A (2022) Process optimization of ultrasonic-assisted biodiesel production from waste cooking oil using waste chicken eggshell-derived CaO as a green heterogeneous catalyst. Biomass Bioenerg 158:106357

    Article  CAS  Google Scholar 

  2. Xu J, Long F, Jiang J et al (2019) Intergrated catalytic conversion of waste triglycerides to liquid hydrocarbon for aviation biofuels. J Clean Prod 222:784–792

    Article  CAS  Google Scholar 

  3. Chansiriwat W, Wantala K, Khunphonoi R et al (2022) Enhancing the catalytic performance of calcium-based catalyst derived from gypsum waste for renewable light fuel production through a pyrolysis process: A study on the effect of magnesium content. Chemosphere 292:133516

    Article  CAS  PubMed  Google Scholar 

  4. Yu S, Wu S, Li L et al (2020) Upgrading bio-oil from waste cooking oil by esterification using SO42−/ZrO2 as catalyst. Fuel 276:118019

    Article  CAS  Google Scholar 

  5. Taufiqurrahmi N, Bhatia S (2011) Catalytic cracking of edible and non-edible oils for the production of biofuels. Energy Environ Sci 4:1087–1112

    Article  CAS  Google Scholar 

  6. Naik SN, Goud VV, Rout PK et al (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597

    Article  CAS  Google Scholar 

  7. Maher KD, Bressler DC (2007) Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour Technol 98:2351–2368

    Article  CAS  PubMed  Google Scholar 

  8. Zhang H, Xiao R, Huang H et al (2009) Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol 100:1428–1434

    Article  CAS  PubMed  Google Scholar 

  9. Zhang C, Chen S, Zhang Y (2013) Development process and research progress of catalytic cracking catalyst. Petrochemical Industry Application 32:5–9

    Google Scholar 

  10. Zhu S, Ni W, Zhang M et al (2006) Recent progress in the preparation and application research of mesoporous molecular sieve materials. Acta Petrologica Et Mineralogica 25:327–334

    CAS  Google Scholar 

  11. Li X, Li R (2012) Synthesis and characterization of KIT-6 mesoporous molecular sieve. Henan Chemical Industry 000:35–37

    Google Scholar 

  12. Guo B, Liu C (2011) Progress in application of mesoporous molecular sieve catalysts. Henan Chemical Industry 12:3–5

    Google Scholar 

  13. Luo W, Guo J, Wu J et al (2012) Study on synthesis method and application of molecular sieve. Taiyuan Science and Technology 2:97–99

    Google Scholar 

  14. Zanatta ER, Reinehr TO, Barros JLM et al (2021) Hydroisomerization of n-hexadecane under mesoporous molecular sieve Pt/Al-SBA-15. Mol Catal 512:111737

    Article  CAS  Google Scholar 

  15. Turaga UT, Song C (2003) MCM-41-supported Co-Mo catalysts for deep hydrodesulfurization of light cycle oil. Catal Today 86:129–140

    Article  CAS  Google Scholar 

  16. Nava R, Morales J, Alonso G et al (2007) Influence of the preparation method on the activity of phosphate-containing CoMo/HMS catalysts in deep hydrodesulphurization. Appl Catal A Gen 321:58–70

    Article  CAS  Google Scholar 

  17. Dhar GM, Kumaran GM, Kumar M et al (2005) Physico-chemical characterization and catalysis on SBA-15 supported molybdenum hydrotreating catalysts. Catal Today 99:309–314

    Article  CAS  Google Scholar 

  18. Zhang X, Dong H, Wang Y et al (2016) Study of catalytic activity at the Ag/Al-SBA-15 catalysts for CO oxidation and selective CO oxidation. Chem Eng J 283:1097–1107

    Article  CAS  Google Scholar 

  19. Zhang X, Dong H, Gu Z et al (2015) Preferential carbon monoxide oxidation on Ag/Al-SBA-15 catalysts: effect of the Si/Al ratio. Chem Eng J 269:94–104

    Article  CAS  Google Scholar 

  20. Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107(7):2821–2860.

    Article  CAS  PubMed  Google Scholar 

  21. Kleitz F, Choi SH, Ryoo R (2003) Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun 9:2136–2137

    Article  Google Scholar 

  22. Sun H, Han J, Ding Y et al (2010) One-pot synthesized mesoporous Ca/SBA-15 solid base for transesterification of sunflower oil with methanol. Appl Catal A Gen 390:26–34

    Article  CAS  Google Scholar 

  23. Li L, Quan K, Xu J et al (2014) Liquid hydrocarbon fuels from catalytic cracking of rubber seed oil using USY as catalyst. Fuel 123:189–193

    Article  CAS  Google Scholar 

  24. Xu J, Jiang J, Sun Y et al (2010) Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst. Bioresour Technol 101:9803–9806

    Article  CAS  PubMed  Google Scholar 

  25. Wiggers VR, Meier HF, Wisniewski A et al (2009) Biofuels from continuous fast pyrolysis of soybean oil: a pilot plant study. Bioresour Technol 100:6570–6577

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Quan K, Xu J et al (2013) Mesoporous molecular sieves K2O/Ba(Ca or Mg)-MCM-41 with base sites as heterogeneous catalysts for the production of liquid hydrocarbon fuel from catalytic cracking of rubber seed oil. Green Chem 15:2573–2578

    Article  CAS  Google Scholar 

  27. Vizcaíno AJ, Carrero A, Calles JA (2009) Ethanol steam reforming on Mg- and camodified Cu-Ni/SBA-15 catalysts. Catal Today 146:63–70

    Article  Google Scholar 

  28. Goula MA, Lemonidou AA, Efstathiou AM (1996) Characterization of carbonaceous species formed during reforming of CH4 with CO2 over Ni/CaO-Al2O3 catalysts studied by various transient techniques. J Catal 161:626–640

    Article  CAS  Google Scholar 

  29. Koo KY, Roh HS, Seo YT et al (2008) Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process. Appl Catal A Gen 340:183–190

    Article  CAS  Google Scholar 

  30. Xu Z, Zhen M, Bi Y et al (2000) Carbon dioxide reforming of methane to synthesis gas over hexaaluminate ANi Al11O19-s (A = Ca, Sr, Ba and La) catalysts. Catal Lett 64:157–161

    Article  CAS  Google Scholar 

  31. Valderrama G, Kiennemann A, Goldwasser MR (2010) La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane. J Power Sources 195:1765–1771

    Article  CAS  Google Scholar 

  32. Meshkani F, Rezaei M (2011) Nickel catalyst supported on magnesium oxide with high surface area and plate-like shape: a highly stable and active catalyst in methane reforming with carbon dioxide. Catal Commun 12:1046–1050

    Article  CAS  Google Scholar 

  33. Wang N, Yu X, Shen K et al (2013) Synthesis, characterization and catalytic performance of MgO-coated Ni/SBA-15 catalysts for methane dry reforming to syngas and hydrogen. Int J Hydrogen Energy 38:9718–9731

    Article  CAS  Google Scholar 

  34. Botas JA, Serrano DP, García A et al (2014) Catalytic conversion of rapeseed oil for the production of raw chemicals, fuels and carbon nanotubes over Ni-modified nanocrystalline and hierarchical ZSM-5. Appl Catal B: Environ 145:205–215

    Article  CAS  Google Scholar 

  35. Teixeira CM, Fréty R, Barbosa CBM et al (2017) Mo influence on the kinetics of jatropha oil cracking over Mo/HZSM-5 catalysts. Catal Today 279:202–208

    Article  CAS  Google Scholar 

  36. Faruque MO, Razzak SA, Hossain MM (2020) Application of heterogeneous catalysts for biodiesel production from microalgal oil—A review. Catalysts 10:1025

    Article  CAS  Google Scholar 

  37. Yu S, Cao X, Li L et al (2018) Catalytic cracking of rubber seed oil using basic mesoporous molecular sieves K2O/MeO-SBA-15 (Me = Ca, Mg or Ba) as heterogeneous catalysts for the production of liquid hydrocarbon fuels. Catal Lett 148:3787–3796

    Article  CAS  Google Scholar 

  38. Yang Y, Hou F, Li H et al (2017) Facile synthesis of Ag/KIT-6 catalyst via a simple one pot method and application in the CO oxidation. J Porous Mater 24:1661–1665

    Article  CAS  Google Scholar 

  39. Liu S, Chen J, Peng Y et al (2018) Studies on toluene adsorption performance and hydrophobic property in phenyl functionalized KIT-6. Chem Eng J 334:191–197

    Article  CAS  Google Scholar 

  40. Kim TW, Kleitz F, Paul B et al (2005) MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer-butanol-water system. J Am Chem Soc 127:7601–7610

    Article  CAS  PubMed  Google Scholar 

  41. Alazzawi HF, Salih IK, Albayati TM et al (2021) Drug delivery of amoxicillin molecule as a suggested treatment for covid-19 implementing functionalized mesoporous SBA-15 with aminopropyl groups. Drug Delivery 28:856–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Subhan F, Aslam S, Yan Z et al (2022) Confinement of Au, Pd and Pt nanoparticle with reduced sizes: significant improvement of dispersion degree and catalytic activity. Microporous Mesoporous Mater 337:111927

    Article  CAS  Google Scholar 

  43. Subhan F, Aslam S, Yan Z et al (2020) Unusual Pd nanoparticle dispersion in microenvironment for p-nitrophenol and methylene blue catalytic reduction. J Colloid Interface Sci 578:37–46

    Article  CAS  PubMed  Google Scholar 

  44. Kumar N, Leino E, Mäki-Arvela P et al (2012) Synthesis and characterization of solid base mesoporous and microporous catalysts: influence of the support, structure and type of base metal. Micropor Mesopor Mat 152:71–77

    Article  CAS  Google Scholar 

  45. Wu Z, Jiang Q, Wang Y et al (2006) Generating superbasic sites on mesoporous silica SBA-15. Chem Mater 18:4600–4608

    Article  CAS  Google Scholar 

  46. Liu H, Xu S, Zhou G et al (2018) CO2 hydrogenation to methane over Co/KIT-6 catalysts: effect of Co content. Fuel 217:570–576

    Article  CAS  Google Scholar 

  47. Lv Y, Xin Z, Meng X et al (2018) Ni based catalyst supported on KIT-6 silica for CO methanation: Confinement effect of three dimensional channel on NiO and Ni particles. Micropor Mesopor Mat 262:89–97

    Article  CAS  Google Scholar 

  48. Rezaei M, Chermahini AN, Dabbagh HA (2017) Green and selective oxidation of cyclohexane over vanadium pyrophosphate supported on mesoporous KIT-6. Chem Eng J 314:515–525

    Article  CAS  Google Scholar 

  49. Meng J, Wang Z, Ma Y et al (2017) Hydrocracking of low-temperature coal tar over NiMo/Beta-KIT-6 catalyst to produce gasoline oil. Fuel Process Technol 165:62–71

    Article  CAS  Google Scholar 

  50. Zhang D, Duan A, Zhao Z et al (2010) Synthesis, characterization, and catalytic performance of NiMo catalysts supported on hierarchically porous Beta-KIT-6 material in the hydrodesulfurization of dibenzothiophene. J Catal 274:273–286

    Article  CAS  Google Scholar 

  51. Liu H, Xu S, Zhou G et al (2018) CO2 hydrogenation to methane over Co/KIT-6 catalyst: effect of reduction temperature. Chem Eng J 351:65–73

    Article  CAS  Google Scholar 

  52. Bian L, Zhang L, Xia R et al (2015) Enhanced low-temperature CO2 methanation activity on plasma-prepared Ni-based catalyst. J Nat Gas Sci Eng 27:1189–1194

    Article  CAS  Google Scholar 

  53. Xie C, Liu F, Yu S et al (2008) Study on catalytic pyrolysis of polystyrene over base modified silicon mesoporous molecular sieve. Catal Commun 9:1132–1136

    Article  CAS  Google Scholar 

  54. Zhang A, Ma Q, Wang K et al (2006) Naphthenic acid removal from crude oil through catalytic decarboxylation on magnesium oxide. Appl Catal A Gen 303:103–109

    Article  CAS  Google Scholar 

  55. Xu J, Xiao G, Zhou Y et al (2011) Production of biofuels from high-acid-value waste oils. Energy Fuels 25:4638–4642

    Article  CAS  Google Scholar 

  56. Wakui K, Satoh K, Sawada G et al (2022) Dehydrogenative cracking of n-butane over modifed HZSM-5 catalysts. Catal Lett 81:83–88

    Article  Google Scholar 

  57. Tani H, Hasegawa T, Shimouchi M et al (2011) Selective catalytic decarboxy-cracking of triglyceride to middledistillate hydrocarbon. Catal Today 164:410–414

    Article  CAS  Google Scholar 

  58. Thangadurai T, Tye CT (2021) Acidity and basicity of metal oxide-based catalysts in catalytic cracking of vegetable oil. Braz J Chem Eng 38:1–20

    Article  CAS  Google Scholar 

  59. Cheng S, Wei L, Zhao X et al (2016) Application, deactivation, and regeneration of heterogeneous catalysts in bio-oil upgrading. Catalysts 6:195

    Article  Google Scholar 

  60. Long F, Zhang X, Cao X et al (2020) Mechanism investigation on the formation of olefins and paraffin from the thermochemical catalytic conversion of triglycerides catalyzed by alkali metal catalysts. Fuel Process Technol 200:106312

    Article  CAS  Google Scholar 

  61. Kouzu M, Kuwako T, Ohto Y et al (2020) Single stage upgrading with the help of bifunctional catalysis of Pt supported on solid acid for converting product oil of triglyceride thermal cracking into drop-in fuel. Fuel Process Technol 202:106364

    Article  CAS  Google Scholar 

  62. Shang Y, Wang Z, Cui X et al (2022) Preparation of liquid biofuel from catalytic cracking of waste cooking oil using basic mesoporous molecular sieve MeO/Ca-MNC-13. Catal Lett 152:3414–3426

    Article  CAS  Google Scholar 

  63. Hansford RC (1947) Mechanism of catalytic cracking. Ind Eng Chem 39:849–852

    Article  CAS  Google Scholar 

  64. Pu M, Qi K, Li R et al (2022) Studied on the mechanism of acid-base synergistic pyrolysis of waste cooking oils to superior quality biofuel. Biomass Bioenerg 165:106591

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21805158), the Sci-Tech Demonstration & Guidance Project of Qingdao (20-3-4-5 nsh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Wang, Z., Shang, Y. et al. Preparation of Hydrocarbon Rich Biofuel from Cracking of Waste Cooking Oil Catalyzed by Basic Mesoporous Molecular Sieve Me-KIT-6. Catal Lett 153, 3392–3404 (2023). https://doi.org/10.1007/s10562-022-04237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04237-3

Keywords

Navigation