Skip to main content

Advertisement

Log in

A Pentanuclear Cu(II)-based 2D Bilayer Coordination Polymer for CO2 Fixation Under Mild Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The recovery of carbon dioxide (CO2) through carbon capture and utilization (CCU) technology to produce valuable chemicals has good industrial prospects, and it is also an effective method to solve the problem of global warming and achieve sustainable development. Unfortunately, catalysts are needed to realize the chemical conversion of CO2 due to its low reactivity. In this work, we selected transition metal copper ions and rigid triazole organic ligand 4-(1H-1,2, 4-triazol-1-yl)-benzoic acid to synthesize two-dimensional(2D) bilayer coordination polymer containing pentanuclear copper cluster by solvothermal synthesis method, and its molecular formula is [Cu5(TABC)4(COO)2(μ-O)2(NO3)2(H2O)·11H2O] (Cu-TABC). The pentanuclear [Cu5O2(COO)6] cluster forms a 2D layered structure by connecting to linear ligands, and the three-dimensional(3D) supramolecular structure with one-dimensional(1D) channels is formed by π–π interaction between layers and further parallel stacking, in which the channel window is quadrilateral and the size is 11.6 × 11.5 Å. Simultaneously, coordination unsaturated copper ions can be used as Lewis acid sites to catalyze the cycloaddition reaction of CO2 and epoxides. Importantly, Cu-TABC exhibits excellent catalytic performance, recoverability and significant size effect under solvent-free and mild conditions (0.1 MPa and 25 °C).

Graphical Abstract

A pentanuclear Cu(II)-based 2D bilayer coordination polymer was used as a heterogeneous catalyst for the cycloaddition reaction of CO2 and epoxides with high activity under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1

Similar content being viewed by others

References

  1. Li JR, Ma Y, McCarthy MC et al (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordin Chem Rev 255(15–16):1791–1823

    Article  CAS  Google Scholar 

  2. Goeppert A, Czaun M, May RB et al (2011) Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J Am Chem Soc 133(50):20164–20167

    Article  CAS  PubMed  Google Scholar 

  3. Bien CE, Liu Q, Wade CR (2019) Assessing the role of metal identity on CO2 adsorption in MOFs containing M-OH functional groups. Chem Mater 32(1):489–497

    Article  Google Scholar 

  4. Srivastava R, Srinivas D, Ratnasamy P (2005) Zeolite-based organic-inorganic hybrid catalysts for phosgene-free and solvent-free synthesis of cyclic carbonates and carbamates at mild conditions utilizing CO2. Appl Catal A-Gen 289(2):128–134

    Article  CAS  Google Scholar 

  5. Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41(18):6010–6022

    Article  CAS  PubMed  Google Scholar 

  6. Biemmi E, Christian S, Stock N et al (2009) High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Micropor Mesopor Mat 117(1–2):111–117

    Article  CAS  Google Scholar 

  7. Zhang Y, Liu L, Xu WG et al (2021) MOF@POP core–shell architecture as synergetic catalyst for high-efficient CO2 fixation without cocatalyst under mild conditions. J CO2 Util 117(1–2):111–117

    Google Scholar 

  8. Liu S, Gao ML, Zhang Y et al (2021) Trifunctional metal-organic framework catalyst for CO2 conversion into cyclic carbonates. Inorg Chem 60(9):6152–6156

    Article  CAS  PubMed  Google Scholar 

  9. Liu L, Wang SM, Han ZB et al (2016) Exceptionally robust in-based metal-organic framework for highly efficient carbon dioxide capture and conversion. Inorg Chem 55(7):3558–3565

    Article  CAS  PubMed  Google Scholar 

  10. Seal N, Karthic K, Singh M et al (2022) Mixed-ligand-devised anionic MOF with divergent open Co(II)-nodes as chemo-resistant, bi-functional material for electrochemical water oxidation and mild-condition tandem CO2 fixation. Chem Eng J 429:132301

    Article  CAS  Google Scholar 

  11. Singh M, Solanki P, Patel P et al (2019) Highly active ultrasmall ni nanoparticle embedded inside a robust metal-organic framework: remarkably improved adsorption, selectivity, and solvent-free efficient fixation of CO2. Inorg Chem 58(12):8100–8110

    Article  CAS  PubMed  Google Scholar 

  12. Seal N, Neogi S (2021) Intrinsic-unsaturation-enriched biporous and chemorobust Cu(II) framework for efficient catalytic co2 fixation and pore-fitting actuated size-exclusive hantzsch condensation with mechanistic validation. ACS Appl Mater Inter 13(46):55123–55135

    Article  CAS  Google Scholar 

  13. Seal N, Singh M, Das S et al (2021) Dual-functionalization actuated trimodal attribute in an ultra-robust MOF: exceptionally selective capture and effectual fixation of CO2 with fast-responsive, nanomolar detection of assorted organo-contaminants in water. Mater Chem Front 5(2):979–994

    Article  CAS  Google Scholar 

  14. Nguyen PTK, Nguyen HTD, Nguyen HN et al (2018) New metal-organic frameworks for chemical fixation of CO2. ACS Appl Mater Inter 10(1):733–744

    Article  CAS  Google Scholar 

  15. Li N, Feng R, Zhu J et al (2018) Conformation versatility of ligands in coordination polymers: from structural diversity to properties and applications. Coord Chem Rev 375:558–586

    Article  CAS  Google Scholar 

  16. Furukawa H, Cordova KE, O’Keeffe M et al (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444

    Article  PubMed  Google Scholar 

  17. Jiao L, Seow JYR, Skinner WS et al (2019) Metal–organic frameworks: structures and functional applications. Mate Today 27:43–68

    Article  CAS  Google Scholar 

  18. Safaei M, Foroughi MM, Ebrahimpoor N et al (2019) A review on metal-organic frameworks: synthesis and applications. TrAC-Trend Anal Chem 118:401–425

    Article  CAS  Google Scholar 

  19. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various mof topologies, morphologies, and composites. Chem Rev 112(2):933–969

    Article  CAS  PubMed  Google Scholar 

  20. Dybtsev DN, Nuzhdin AL, Chun H et al (2006) A homochiral metal-organic material with permanent porosity, enantioselective sorption properties, and catalytic activity. Angew Chem Int Edit 45(6):916–920

    Article  CAS  Google Scholar 

  21. Millange F, El Osta R, Medina ME et al (2011) A time-resolved diffraction study of a window of stability in the synthesis of a copper carboxylate metal–organic framework. CrystEngComm 13(1):103–108

    Article  CAS  Google Scholar 

  22. Hou SL, Dong J, Tang MH et al (2019) Triple-interpenetrated lanthanide-organic framework as dual wave bands self-calibrated pH luminescent probe. Anal Chem 91(8):5455–5460

    Article  CAS  PubMed  Google Scholar 

  23. Wei N, Zhang Y, Liu L et al (2017) Pentanuclear Yb(III) cluster-based metal-organic frameworks as heterogeneous catalysts for CO2 conversion. Appl Catal B-Environ 219:603–610

    Article  CAS  Google Scholar 

  24. Wei N, Zuo RX, Zhang YY et al (2017) Robust high-connected rare-earth MOFs as efficient heterogeneous catalysts for CO2 conversion. Chem Commun 53(22):3224–3227

    Article  CAS  Google Scholar 

  25. Xu H, Cao CS, Hu HS et al (2019) High uptake of ReO4- and CO2 conversion by a radiation-resistant thorium-nickle [Th48Ni6] nanocage-based metal-organic framework. Angew Chem Int Edit 58(18):6022–6027

    Article  CAS  Google Scholar 

  26. Ugale B, Dhankhar SS, Nagaraja CM (2018) Exceptionally stable and 20-connected lanthanide metal-organic frameworks for selective CO2 capture and conversion at atmospheric pressure. Cryst Growth Des 18(4):2432–2440

    Article  CAS  Google Scholar 

  27. Xue Z, Jiang J, Ma MG et al (2017) Gadolinium-based metal-organic framework as an efficient and heterogeneous catalyst to activate epoxides for cycloaddition of CO2 and alcoholysis. ACS Sustain Chem Eng 5(3):2623–2631

    Article  CAS  Google Scholar 

  28. Jing T, Chen L, Jiang F et al (2018) Fabrication of a robust lanthanide metal-organic framework as a multifunctional material for Fe(III) detection, CO2 capture, and utilization. Cryst Growth Des 18(5):2956–2963

    Article  CAS  Google Scholar 

  29. Song TQ, Dong J, Yang AF et al (2018) Wheel-like Ln18 cluster organic frameworks for magnetic refrigeration and conversion of CO2. Inorg Chem 57(6):3144–3150

    Article  CAS  PubMed  Google Scholar 

  30. Dey C, Kundu T, Biswal BP et al (2014) Crystalline metal-organic frameworks (MOFs): synthesis Structure and Function. Acta Crystallogr B 70:3–10

    Article  CAS  Google Scholar 

  31. Lazarou KN, Psycharis V, Terzis A, Raptopoulou CP (2011) Network diversity and supramolecular isomerism in Copper(II)/1,2-bis(4-pyridyl)ethane coordination polymers. Polyhedron 30(6):963–970

    Article  CAS  Google Scholar 

  32. Senthilkumar S, Goswami R, Smith VJ et al (2018) Pore wall-functionalized luminescent Cd(II) framework for selective CO2 adsorption, highly specific 2,4,6-trinitrophenol detection, and colorimetric sensing of Cu2+ Ions. ACS Sustainable Chem Eng 6(8):10295–10306

    Article  CAS  Google Scholar 

  33. Singh M, Senthilkumar S, Rajput S et al (2020) Pore-functionalized and hydrolytically robust Cd(II)-metal-organic framework for highly selective, multicyclic CO2 adsorption and fast-responsive luminescent monitoring of Fe(III) and Cr(VI) ions with notable sensitivity and reusability. Inorg Chem 59(5):3012–3025

    Article  CAS  PubMed  Google Scholar 

  34. Singh M, Palakkal AS, Pillai RS et al (2021) N-functionality actuated improved CO2 adsorption and turn-on detection of organo-toxins with guest-induced fluorescence modulation in isostructural diamondoid MOFs. J Mater Chem C 9(22):7142–7153

    Article  CAS  Google Scholar 

  35. Perles J, Snejko N, Iglesias M et al (2009) 3D scandium and yttrium arenedisulfonate MOF materials as highly thermally stable bifunctional heterogeneous catalysts. J Mater Chem 19(36):6504–6511

    Article  CAS  Google Scholar 

  36. Abdelbaky MSM, Amghouz Z, Fernández-Zapico E et al (2015) Metal–organic frameworks assembled from lanthanide and 2,5-pyridinedicaboxylate with cubane-Like [Ln4(OH)4] building units. J Solid State Chem 229:197–207

    Article  CAS  Google Scholar 

  37. Fang WH, Jia XL, Yang GY (2014) Lanthanide cluster organic frameworks derived from pyridine-2,6-dicarboxylate and oxalate: syntheses Structures and Luminescence. J Clust Sci 25(6):1553–1565

    Article  CAS  Google Scholar 

  38. Zhao ZS, Zhang Y, Fang T et al (2020) Chitosan-coated metal–organic-framework nanoparticles as catalysts for tandem deacetalization-knoevenagel condensation reactions. ACS Appl Nano Mater 3(7):6316–6320

    Article  CAS  Google Scholar 

  39. Skarlis SA, Berthout D, Nicolle A et al (2013) IR spectroscopy analysis and kinetic modeling study for NH3 adsorption and desorption on H- and Fe-BEA catalysts. The J Phys Chem C 117(14):7154–7169

    Article  CAS  Google Scholar 

  40. Dilip KP, Chad DM (1999) Control of RhI(CO)2 formation on Rh/Al2O3 catalysts by complexation of surface -OH groups using NH3. Langmuir 15:4508–4512

    Article  Google Scholar 

  41. Ramis G, Li Y, Busca G (1996) Ammonia activation over catalysts for the selective catalytic reduction of NO, and the selective catalytic oxidation of NH3. An FT-IR study Catal Today 28:373–380

    Article  CAS  Google Scholar 

  42. Spielbauer D, Mekhemer GAH, Zaki MI et al (1996) Acidity of sulfated zirconia as studied by FTIR spectroscopy of adsorbed CO and NH3 as probe molecules. Catal Lett 40:71–79

    Article  CAS  Google Scholar 

  43. Guillerm V, Weselinski L, Belmabkhout Y et al (2014) Discovery and introduction of a (3,18)-connected nest as an ideal blueprint for the design of metal-organic frameworks. Nat Chem 6(8):673–680

    Article  CAS  PubMed  Google Scholar 

  44. Pal TK, De D, Bharadwaj PK (2020) Metal–organic frameworks for the chemical fixation of CO2 into cyclic carbonates. Coord Chem Rev 408:213173

    Article  CAS  Google Scholar 

  45. Beyzavi MH, Stephenson CJ, Liu Y et al (2015) Metal-organic framework-based catalysts: chemical fixation of co2 with epoxides leading to cyclic organic carbonates. Front Energy Res 2:1–10

    Article  Google Scholar 

  46. He H, Perman JA, Zhu G et al (2016) Metal-organic frameworks for CO2 chemical transformations. Small 12(46):6309–6324

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 22171121), Liaoning Revitalization Talents Program (Grant No. XLYC2007060), and Scientific Research Foundation of Educational Department of Liaoning Province (Grant No. LJC202004).

Author information

Authors and Affiliations

Authors

Contributions

SL: writing-original draft, software, investigation. L-HL: writing-original draft, software, investigation. LL: resources, visualization. Z-BH: conceptualization, methodology, resources, writing-review & editing, supervision.

Corresponding authors

Correspondence to Lin Liu or Zheng-Bo Han.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14838 KB)

Appendix 1: Supplementary Data

Appendix 1: Supplementary Data

Experimental details, Crystal structures, PXRD, FT-IR of Cu-TABC, and X-ray crystallographic data for Cu-TABC in CIF format (CIF) and additional tables and figures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, LH., Liu, L. et al. A Pentanuclear Cu(II)-based 2D Bilayer Coordination Polymer for CO2 Fixation Under Mild Conditions. Catal Lett 153, 2892–2899 (2023). https://doi.org/10.1007/s10562-022-04225-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04225-7

Keywords

Navigation