Skip to main content

Advertisement

Log in

2-Methylimidazole Modified Co-BTC MOF as an Efficient Catalyst for Chemical Fixation of Carbon Dioxide

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

[(CH3)2NH2][Co3(BTC)(HCOO)4(H2O)]·H2O (Co-BTC) was synthesized under solvothermal conditions, further used as the precursor for the synthesis of 2-methylimidazole modified Co-BTC (2MeIm@Co-BTC-x). The characteristics of 2MeIm@Co-BTC-x were systematically characterized by various technologies including XRD, FESEM, FT-IR, XPS, N2-adsorption, TG-DTG and CO2/NH3-TPD. It was found that except for the crystal faces (0 1 1) and (− 1 0 2) corresponding to ZIF-67 and Co-BTC, a new crystal phase appeared at 12.22o for the modified Co-BTC, which may be attributed to the coordination between 2MeIm and unsaturated Co ions of Co-BTC. Interestingly, a new structure of hexagonal prisms together with hierarchical porous were also formed for the modified Co-BTC. Besides, when this composite was explored as a heterogeneous catalyst for catalytic conversion of carbon dioxide with epichlorohydrin (ECH) as probe, an obvious enhancement in catalytic activity was obtained compared with the fresh Co-BTC, suggesting that 2MeIm ligands within the modified Co-BTC played a great role on the coupling process. Furthermore, 97.21% of ECH conversion and 98.79% of chloropropene carbonate selectivity were gained over 2MeIm@Co-BTC-1.0 under optimal conditions (3.0 MPa, 90 °C, 5 h, 0.75 wt% catalyst of ECH). Additionally, only a slight decrease in catalytic activity was found after the optimal sample was reused three times. Finally, a mechanism for interpreting the coupling process of carbon dioxide cycloaddition with epoxide was proposed.

Graphic Abstract

One-pot catalytic conversion of CO2 into cyclic carbonate over 2-methylimidazole modified Co-BTC

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11

Similar content being viewed by others

References

  1. Sarfraz M, Ba-Shammakh M (2016) J Taiwan Inst Chem Eng 65:427–436

    Article  CAS  Google Scholar 

  2. Dai WL, Chen L, Yin SF, Li WH, Zhang YY, Luo SL, Au CT (2010) Catal Lett 137:74–80

    Article  CAS  Google Scholar 

  3. Wang TF, Zheng DN, Ma Y, Guo JY, He ZP, Ma B, Liu LH, Ren TG, Wang L, Zhang JL (2017) J CO2 Util 22:44–52

    Article  CAS  Google Scholar 

  4. Yang N, Wang R (2015) J Clean Prod 103:784–792

    Article  CAS  Google Scholar 

  5. Zamani AH, Shohaimi NAM, Rosid SJM, Abdullah NH, Shukri NM (2019) J Taiwan Inst Chem Eng 96:400–408

    Article  CAS  Google Scholar 

  6. Song QW, Zhou ZH, He LN (2017) Green Chem 19:3707–3728

    Article  CAS  Google Scholar 

  7. Fan GZ, Luo SS, Fang T, Wu Q, Song GS, Li JF (2015) J Mol Catal A 404–405:92–97

    Article  CAS  Google Scholar 

  8. Fan GZ, Zhao HT, Duan ZX, Fang T, Wan MH, He LN (2011) Catal Sci Technol 1:1138–1141

    Article  CAS  Google Scholar 

  9. Xu H, Liu XF, Cao CS, Zhao B, Cheng P, He LN (2016) Adv Sci 3:1600048

    Article  CAS  Google Scholar 

  10. Tamura M, Honda M, Noro K, Nakagawa Y, Tomishige K (2013) J Catal 305:191–203

    Article  CAS  Google Scholar 

  11. Kumar P, Srivastava VC, Gläser R, With P, Mishra IM (2017) Powder Technol 309:13–21

    Article  CAS  Google Scholar 

  12. Peng J, Yang HJ, Song NN, Guo CY (2015) J CO2 Util 9:16–22

    Article  CAS  Google Scholar 

  13. Wu YF, Song XH, Zhang JH, Xu SQ, Gao LJ, Zhang J, Xiao GM (2019) Chem Eng Sci 201:288–297

    Article  CAS  Google Scholar 

  14. Ghosh A, Ramidi P, Pulla S, Sullivan SZ, Collom SL, Gartia Y, Munshi P, Biris AS, Noll BC, Berry BC (2010) Catal Lett 137:1–7

    Article  CAS  Google Scholar 

  15. Wang TF, Zheng DN, Zhang JS, Fan BW, Ma Y, Ren TG, Wang L, Zhang JH (2017) ACS Sustain Chem Eng 6:2574–2582

    Article  CAS  Google Scholar 

  16. Goodrich P, Gunaratne HQN, Jacquemin J, Jin LL, Lei YT, Seddon KR (2017) ACS Sustain Chem Eng 5:5635–5641

    Article  CAS  Google Scholar 

  17. Yue CT, Su D, Zhang X, Wu W, Xiao LF (2014) Catal Lett 144:1313–1321

    Article  CAS  Google Scholar 

  18. Zheng DN, Zhang JS, Zhu XR, Ren TG, Wang L, Zhang JL (2018) J CO2 Util 27:99–106

    Article  CAS  Google Scholar 

  19. Wu ZL, Xie HB, Yu X, Liu EH (2013) ChemCatChem 5:1328–1333

    Article  CAS  Google Scholar 

  20. Tharun J, Mathai G, Kathalikkattil AC, Roshan R, Kwak JY, Park DW (2013) Green Chem 15:1673

    Article  CAS  Google Scholar 

  21. Xue ZM, Zhao XH, Wang JF, Mu TC (2017) Chemistry 12:2271–2277

    CAS  Google Scholar 

  22. Xie Y, Wang TT, Yang RX, Huang NY, Zou K, Deng WQ (2014) Chemsuschem 7:2110–2114

    Article  CAS  PubMed  Google Scholar 

  23. Monassier A, D’Elia V, Cokoja M, Dong HL, Pelletier JDA, Basset JM, Kühn FE (2013) ChemCatChem 5:1321–1324

    Article  CAS  Google Scholar 

  24. Tiffner M, Gonglach S, Haas M, Schçfberger W, Waser M (2017) Chemistry 12:1048–1051

    CAS  Google Scholar 

  25. Chang HB, Li QS, Cui XM, Wang HX, Bu ZW, Qiao CZ, Lin T (2018) J CO2 Util 24:174–179

    Article  CAS  Google Scholar 

  26. Buonerba A, De Nisi A, Grassi A, Milione S, Capacchione C, Vagin S, Rieger B (2015) Catal Sci Technol 5:118–123

    Article  CAS  Google Scholar 

  27. Zhi YF, Mu JL, Shan SY, Su HY, Wu SS, Jia QM (2016) J Taiwan Inst Chem Eng 61:351–355

    Article  CAS  Google Scholar 

  28. Tambe PR, Yadav GD (2017) Clean Technol Environ Policy 20:345–356

    Article  CAS  Google Scholar 

  29. Jeong HM, Roshan R, Babu R, Kim HJ, Park DW (2017) Korean J Chem Eng 35:438–444

    Article  CAS  Google Scholar 

  30. Song JL, Zhang ZF, Hu SQ, Wu TB, Jiang T, Han BX (2009) Green Chem 11:1031–1036

    Article  CAS  Google Scholar 

  31. Mousavi B, Chaemchuen S, Moosavi B, Luo ZX, Gholampour N, Verpoort F (2016) New J Chem 40:5170–5176

    Article  CAS  Google Scholar 

  32. Miralda CM, Macias EE, Zhu MQ, Ratnasamy P, Carreon MA (2012) ACS Catal 2:180–183

    Article  CAS  Google Scholar 

  33. Jang MS, Lee YR, Ahn WS (2015) Bull Korean Chem Soc 36:363–366

    Article  CAS  Google Scholar 

  34. Kim SN, Kim J, Kim HY, Cho HY, Ahn WS (2013) Catal Today 204:85–93

    Article  CAS  Google Scholar 

  35. Zanon A, Chaemchuen S, Mousavi B, Verpoort F (2017) J CO2 Util 20:282–291

    Article  CAS  Google Scholar 

  36. Wu YF, Song XH, Li S, Zhang JH, Yang XH, Shen PX, Gao LJ, Wei RP, Zhang J, Xiao GM (2018) J Ind Eng Chem 58:296–303

    Article  CAS  Google Scholar 

  37. Kwon HT, Jeong HK, Lee AS, An HS, Lee JS (2015) J Am Chem Soc 137:12304–12311

    Article  CAS  PubMed  Google Scholar 

  38. Groen JC, Peffer LAA, Moulijn JA, Pérez-Ramı́rez J (2004) Colloids Surf A 241:53–58

    Article  CAS  Google Scholar 

  39. Sun ZH, Yu WT, Cheng XF, Wang XQ, Zhang GH, Yu G, Fan HL, Xu D (2008) Opt Mater 30:1001–1006

    Article  CAS  Google Scholar 

  40. Zeng GJ, Chen Y, Chen L, Xiong PX, Wei MD (2016) Electrochim Acta 222:773–780

    Article  CAS  Google Scholar 

  41. Sun KK, Li L, Yu XL, Liu L, Meng QT, Wang F, Zhang R (2017) J Colloid Interface Sci 486:128–135

    Article  CAS  PubMed  Google Scholar 

  42. Sánchez-Andújar M, Gómez-Aguirre LC, Pato Doldán B, Yáñez-Vilar S, Artiaga R, Llamas-Saiz AL, Manna RS, Schnelle F, Lang M, Ritter F, Haghighirad AA, Señarís-Rodríguez MA (2014) CrystEngComm 16:3558

    Article  CAS  Google Scholar 

  43. Singh MP, Dhumal NR, Kim HJ, Kiefer J, Anderson JA (2016) J Phys Chem C 120:17323–17333

    Article  CAS  Google Scholar 

  44. Wang PC, Zhou YK, Hu M, Chen J (2017) Appl Surf Sci 392:562–571

    Article  CAS  Google Scholar 

  45. Gowthaman NSK, Sinduja B, Karthikeyan R, Rubini K, Abraham John S (2017) Biosens Bioelectron 94:30–38

    Article  CAS  PubMed  Google Scholar 

  46. Fu Y, Su J, Yang SH, Li GB, Liao FH, Xiong M, Lin JH (2010) Inorg Chim Acta 363:645–652

    Article  CAS  Google Scholar 

  47. Paddock RL, Hiyama Y, McKay JM, Nguyen ST (2004) Tetrahedron Lett 45:2023–2026

    Article  CAS  Google Scholar 

  48. Wu SS, Zhang XW, Dai WL, Yin SF, Li WS, Ren YQ, Au CT (2008) Appl Catal A 341:106–111

    Article  CAS  Google Scholar 

  49. Han LN, Choi HJ, Kim DK, Park SW, Liu BY, Park DW (2011) J Mol Catal A 338:58–64

    CAS  Google Scholar 

  50. Bai DS, Jing HW, Wang GJ (2012) Appl Organomet Chem 26:600–603

    Article  CAS  Google Scholar 

  51. Song XH, Wu YF, Pan DH, Wei RP, Gao LJ, Zhang J, Xiao GM (2018) J CO2 Util 24:287–297

    Article  CAS  Google Scholar 

  52. Miao CX, Wang JQ, Wu Y, Du Y, He LN (2008) Chemsuschem 1:236–241

    Article  CAS  PubMed  Google Scholar 

  53. Song LL, Zhang XL, Chen C, Liu XL, Zhang N (2017) Microporous Mesoporous Mater 241:36–42

    Article  CAS  Google Scholar 

  54. He HM, Perman JA, Zhu GS, Ma SQ (2016) Small 12:6309–6324

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of china (Nos. 21676054, 21406034), and Scientific Research Foundation of Graduate School of Southeast University (No. 3207049714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guomin Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1058 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Song, X., Xu, S. et al. 2-Methylimidazole Modified Co-BTC MOF as an Efficient Catalyst for Chemical Fixation of Carbon Dioxide. Catal Lett 149, 2575–2585 (2019). https://doi.org/10.1007/s10562-019-02874-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02874-9

Keywords

Navigation