Skip to main content
Log in

Mechanistic Study of CrS2/BP as a Direct Z-Scheme Heterojunction for Photocatalyst of Splitting Water Under Biaxial Strain

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Semiconductor photocatalysts are hampered by carriers' recombination problems that hinder their practical application. The rational design of direct Z-scheme heterojunctions based on two-dimensional (2D) materials is one of the effective ways to solve this problem. Therefore, we predicted 2D CrS2/boron phosphide (BP) van der Waals heterojunction as a potential direct Z-scheme photocatalyst based on density functional theory. The CrS2/BP heterojunction has a small direct band gap, which is favorable for light absorption. In addition, the built-in electric field promotes the separation and transfer of the desired carriers. Photogenerated electrons and holes are localized in the conduction band of the BP component and the valence band of the CrS2 component, respectively. In addition, it was found that the heterojunction obtained a relatively small band gap and a wide optical absorption range at + 4% and + 5% strains. Therefore, the CrS2/BP heterojunction is a new photocatalyst satisfying the direct Z-scheme charge transfer mechanism, which has a certain application value.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cheng L, Xiang Q, Liao Y, Zhang H (2018) Energy Environ Sci 11:1362–1391

    Article  Google Scholar 

  2. Kim JH, Hansora D, Sharma P, Jang J-W, Lee JS (2019) Chem Soc Rev 48:1908–1971

    Article  PubMed  Google Scholar 

  3. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110:6446–6473

    Article  PubMed  Google Scholar 

  4. Chen X, Shen S, Guo L, Mao SS (2010) Chem Rev 110:6503–6570

    Article  PubMed  Google Scholar 

  5. Chen X, Li C, Grätzel M, Kostecki R, Mao SS (2012) Chem Soc Rev 41:7909–7937

    Article  PubMed  Google Scholar 

  6. Khan I, Qurashi A, Berdiyorov G, Iqbal N, Fuji K, Yamani ZH (2018) Nano Energy 44:23–33

    Article  Google Scholar 

  7. Faraji M, Yousefi M, Yousefzadeh S, Zirak M, Naseri N, Jeon TH, Choi W, Moshfegh AZ (2019) Energy Environ Sci 12:59–95

    Article  Google Scholar 

  8. O’regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  9. Su T, Shao Q, Qin Z, Guo Z, Wu Z (2018) ACS Catal 8:2253–2276

    Article  Google Scholar 

  10. Fu C-F, Wu X, Yang J (2022) Chem Phys Rev 3:011310

    Article  Google Scholar 

  11. Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Chem Rev 114:9987–10043

    Article  PubMed  Google Scholar 

  12. Yousefpour P, McDaniel JR, Prasad V, Ahn L, Li X, Subrahmanyan R, Weitzhandler I, Suter S, Chilkoti A (2018) Nano Lett 18:7784–7793

    Article  PubMed  PubMed Central  Google Scholar 

  13. Luo B, Liu G, Wang L (2016) Nanoscale 13:86904–86920

    Google Scholar 

  14. Novoselov KS, Geim AK, Morozov SV, Jiang D-E, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  PubMed  Google Scholar 

  15. Meng J, Wang J, Wang J, Li Q, Yang J (2022) J Mater Chem A 10:3443–3453

    Article  Google Scholar 

  16. Li ZZ, Meng XC, Zhang ZS (2018) J Photochem Photobiol C 35:39–55

    Article  Google Scholar 

  17. Kwag SH, Lee YS, Lee J, Jeong DI, Kwon SB, Yoo JH, Woo S, Lim BS, Park WK, Kim MJ, Kim JH, Lim B, Kang BK, Yang WS, Yoon DH (2019) ACS Appl Energy Mater 2:8502–8510

    Article  Google Scholar 

  18. Herbig C, Michely T (2016) 2D Mater 3:025032

    Article  Google Scholar 

  19. Huo L, Liu B, Gao Z, Zhang J (2017) J Mater Chem A 35:18494–18501

    Article  Google Scholar 

  20. Ren K, Tang W, Sun M, Cai Y, Cheng Y, Zhang G (2020) Nanoscale 12:17281–17289

    Article  PubMed  Google Scholar 

  21. Zhang W, Ji W (2020) Phys Chem Chem Phys 22:24662–24668

    Article  PubMed  Google Scholar 

  22. Yu J, Wang S, Low J, Xiao W (2013) Phys Chem Chem Phys 15:16883–16890

    Article  PubMed  Google Scholar 

  23. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  PubMed  Google Scholar 

  25. Liu B, Wang X, Xu J-L, Tian D, Chen R-Y, Xu J, Buab X-H (1994) Phys Rev B 49:16223–16233

    Article  Google Scholar 

  26. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  PubMed  Google Scholar 

  27. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207–8215

    Article  Google Scholar 

  28. Wang V, Xu N, Liu J-C, Tang G, Geng W-T (2021) Comput Phys Commun 267:108033

    Article  Google Scholar 

  29. Wang Q, Domen K (2019) Chem Rev 120:919–985

    Article  PubMed  Google Scholar 

  30. Do T-N, Idrees M, Binh NT, Phuc HV, Hieu NN, Hoa LT, Amin B, Van H (2020) RSC Adv 10:44545–44550

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhao P, Liang Y, Ma Y, Huang B, Dai Y (2019) J Phys Chem C 123:4186–4192

    Article  Google Scholar 

  32. Wang Z, Lin Z, Shen S, Zhong W, Cao S (2021) Chin J Catal 42:710–730

    Article  Google Scholar 

  33. Cao J, Zhang X, Zhao S, Wang S, Cui J (2022) Appl Surf Sci 599:154012

    Article  Google Scholar 

  34. Jiang Q, Zhang J, Huang H, Wu Y, Ao Z (2019) J Phys Chem C 123:11591–11601

    Article  Google Scholar 

  35. Wu W, Ao Z, Yang C, Li S, Wang G, Li C (2015) J Mater Chem C 3:2593–2602

    Article  Google Scholar 

  36. Fu CF, Wu X, Yang J (2018) Adv Mater 30:1802106

    Article  Google Scholar 

Download references

Funding

Funding was provided by the Technology Coordination Innovation Project of Shaanxi province (Grant No.: S2018-ZC-PT-0024)

Author information

Authors and Affiliations

Authors

Contributions

SZ: Writing—original draft, Conceptualization, Methodology, Investigation, Software, Writing—review & editing. XZ: Conceptualization, Resources, Supervision. JC: Investigation, Methodology, Software, Formal analysis.

Corresponding author

Correspondence to Xianbin Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Zhang, X. & Cao, J. Mechanistic Study of CrS2/BP as a Direct Z-Scheme Heterojunction for Photocatalyst of Splitting Water Under Biaxial Strain. Catal Lett 154, 60–70 (2024). https://doi.org/10.1007/s10562-022-04224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04224-8

Keywords

Navigation