Skip to main content
Log in

Two-Dimensional Ti2CO2/CrSSe Heterostructure as a Direct Z-Scheme Photocatalyst for Water Splitting

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In the field of photocatalytic water splitting, the direct Z-scheme heterostructure is regarded as a promising photocatalyst configuration. In this paper, we use density functional theory to predict the Ti2CO2/CrSSe heterostructure as a potential direct Z-scheme heterojunction photocatalyst and investigate its electronic, optical, and heterojunction interface properties. The results show that the Ti2CO2/CrSSe heterojunction has a strong electrostatic attraction between the electrons in the conduction band of Ti2CO2 and the holes in the valence band of CrSSe due to the small interlayer band gap, which can realize the rapid interlayer electron-hole (e–h+) recombination. The redistribution of charge results in a built-in electric field that prevents unwanted electron and hole migration. In addition, the Ti2CO2/CrSSe van der Waals (vdW) heterojunction exhibits excellent light absorption, and its redox ability has been improved. These properties indicate that Ti2CO2/CrSSe heterostructure is a promising photocatalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schultz DM, Yoon T (2014) Solar synthesis: prospects in visible light photocatalysis. Science 343(6174):1239176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photon 6:511–518

    Article  CAS  Google Scholar 

  3. Moniz SJA, Shevlin SA, Martin DJ, Guo Z-X, Tang J (2015) Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ Sci 8(3):731–759

    Article  CAS  Google Scholar 

  4. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  5. Jiang C, Moniz SJA, Wang A, Zhang T, Tang J (2017) Photoelectrochemical devices for solar water splitting—materials and challenges. Chem Soc Rev 46:4645–4660

    Article  CAS  PubMed  Google Scholar 

  6. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Wang L, Beilstein J (2014) Nanostructure sensitization of transition metal oxides for visible-light photocatalysis. Nanotechnology 5:696–710

    Google Scholar 

  8. Karunakaran C, Senthilvelan S (2005) Photocatalysis with ZrO2: oxidation of aniline. J Mol Catal A-chem 233(1–2):1–8

    Article  CAS  Google Scholar 

  9. Luo B, Liu G, Wang L (2016) Recent advances in 2D materials for photocatalysis. Nanoscale 8:6904–6920

    Article  CAS  PubMed  Google Scholar 

  10. Yin WJ, Wei SH, Al-Jassim MM, Yan Y (2011) Double-hole-mediated coupling of dopants and its impact on band gap engineering in TiO2. Phys Rev Lett 106:66801

    Article  CAS  Google Scholar 

  11. Novoselov KS, Geim AK, Morozov SV, Jiang D, ZhangY DSV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  12. Xiao D, Liu G-B, Feng W, Xu X, Yao W (2012) Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett 108:196802

    Article  PubMed  CAS  Google Scholar 

  13. Frame F, Osterloh F (2010) CdSe-MoS2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J Phys Chem C 114(23):10628–10633

    Article  CAS  Google Scholar 

  14. Su T, Shao Q, Qin Z, Guo Z, Wu Z (2018) Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal 8(3):2253–2276

    Article  CAS  Google Scholar 

  15. Ma X, Wu X, Wang H, Wang Y (2018) A Janus MoSSe monolayer: a potential wide solar-spectrum water-splitting photocatalyst with a low carrier recombination rate. J Mater Chem A 6:2295–2301

    Article  CAS  Google Scholar 

  16. Lu A-Y, Zhu H, Xiao J, Chuu C-P, Han Y, Chiu M-H, Cheng C-C, Yang C-W, Wei K-H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller DA, Chou M-Y, Zhang X, Li L-J (2017) Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol 12:744–749

    Article  CAS  PubMed  Google Scholar 

  17. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  18. Gu W, Lu F, Wang C, Kuga S, Wu L, Huang Y, Wu M (2017) Face-to-face interfacial assembly of ultrathin g-C3N4 and anatase TiO2 nanosheets for enhanced solar photocatalytic activity. ACS Appl Mater Interfaces 9(34):28674–28684

    Article  CAS  PubMed  Google Scholar 

  19. Lin B, Li H, An H, Hao W, Wei J, Dai Y, Ma C, Yang G (2018) Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Appl Catal B 220:542–552

    Article  CAS  Google Scholar 

  20. Wu H, Meng S, Zhang J, Zheng X, Wang Y, Chen S, Qi G, Fu X (2020) Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Appl Surf Sci 505:144638

    Article  CAS  Google Scholar 

  21. Zhao P, Liang Y, Ma Y, Huang B, Dai Y (2019) Janus chromium dichalcogenide monolayers with low carrier recombination for photocatalytic overall water-splitting under infrared light. J Phys Chem C 123(7):4186–4192

    Article  CAS  Google Scholar 

  22. Wang J, Rehman SU, Tariq Z, Zhang X, Zheng J, Butt FK, Li C (2021) Pristine and Janus chromium dichalcogenides: potential photocatalysts for overall water splitting in wide solar spectrum under strain and electric field. Sol Energy Mater Sol Cells 230:111258

    Article  CAS  Google Scholar 

  23. Li X, Yu J, Jaroniec M (2016) Hierarchical photocatalysts. Chem Soc Rev 45:2603–2636

    Article  CAS  PubMed  Google Scholar 

  24. Yuan Y-P, Ruan L-W, Barber J, Loo SCJ, Xue C (2014) Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy Environ Sci 7:3934–3951

    Article  CAS  Google Scholar 

  25. Chen S, Hu Y, Ji L, Jiang X, Fu X (2014) Preparation and characterization of direct Z-scheme photocatalyst Bi2O3/NaNbO3 and its reaction mechanism. Appl Surf Sci 292:357–366

    Article  CAS  Google Scholar 

  26. Zhang JF, Hu YF, Jiang XL, Chen SF, Meng SG, Fu XL (2014) Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. J Hazard Mater 280:713–722

    Article  CAS  PubMed  Google Scholar 

  27. Meng S, Sun W, Zhang S, Zheng X, Fu X, Chen S (2018) Insight into the transfer mechanism of photogenerated carriers for WO3/TiO2 heterojunction photocatalysts: is it the transfer of band-band or Z-scheme? Why? J Phys Chem C 122(46):26326–26336

    Article  CAS  Google Scholar 

  28. Meng S, Chen C, Gu X, Wu H, Meng Q, Zhang J, Chen S, Fu X, Liu D, Lei W (2021) Efficient photocatalytic H2 evolution, CO2 reduction and N2 fixation coupled with organic synthesis by cocatalyst and vacancies engineering. Appl Catal B 285:119789

    Article  CAS  Google Scholar 

  29. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133

    Article  Google Scholar 

  30. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  31. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  PubMed  Google Scholar 

  33. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104

    Article  PubMed  CAS  Google Scholar 

  34. Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102(22):226401

    Article  PubMed  CAS  Google Scholar 

  35. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened coulomb potential. J Chem Phys 118(18):8207

    Article  CAS  Google Scholar 

  36. Wang V, Xu N, Liu J-C, Tang G, Geng WT (2019) VASPKIT: a pre- and post-processing program for VASP code. arXiv1908:08269.

  37. Fu CF, Li X, Yang J (2021) A rationally designed two-dimensional MoSe2/Ti2CO2 heterojunction for photocatalytic overall water splitting: simultaneously suppressing electron-hole recombination and photocorrosion. Chem Sci 12:2863–2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Djire A, Wang X, Xiao C, Nwamba OC, Mirkin MV, Neale NR (2020) Nitride MXenes: basal plane hydrogen evolution activity from mixed metal nitride MXenes measured by scanning electrochemical microscopy. Adv Funct Mater 30(47):2070313

    Article  CAS  Google Scholar 

  39. Heyd J, Peralta JE, Scuseriaet GE (2005) Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys 123(17):174101

    Article  PubMed  CAS  Google Scholar 

  40. Xu L, Huang W-Q, Wang L-L, Huang G-F, Peng P (2014) Mechanism of superior visible-light photocatalytic activity and stability of hybrid Ag3PO4/graphene nanocomposite. J Phys Chem C 118(24):12972–12979

    Article  CAS  Google Scholar 

  41. Low J, Jiang C, Cheng B, Wageh S, Al-Ghamdi AA, Yu J (2017) A review of direct Z-scheme photocatalysts. Small Methods 1(5):1700080

    Article  CAS  Google Scholar 

  42. Zhou Z, Niu X, Zhang Y, Wang J (2019) Janus MoSSe/WSeTe heterostructures: a direct Z-scheme photocatalyst for hydrogen evolution. J Mater Chem A 7:21835–21842

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Coordination Innovation Project of Shaanxi province under Grant (No. S2018-ZC-PT-0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianbin Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Zhang, X., Zhao, S. et al. Two-Dimensional Ti2CO2/CrSSe Heterostructure as a Direct Z-Scheme Photocatalyst for Water Splitting. Catal Lett 152, 2564–2574 (2022). https://doi.org/10.1007/s10562-021-03842-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03842-y

Keywords

Navigation