Skip to main content
Log in

Synthesis, Structural Characterization of Schiff Base Ligands and Their RuIIp‐Cymene Complexes, and Catalytic Activity in the Transfer Hydrogenation of Ketones

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, two new Schiff base ligands, (E)-ethyl 2-(2-hydroxybenzylideneamino)-5,5,7,7-tetramethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate (L1) and (E)-ethyl 2-(2-hydroxy-3-methoxybenzylideneamino)-5,5,7,7-tetramethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate (L2), and their corresponding RuII complexes, [L1Ru(p-cymene)]Cl·2.5H2O (1) and [L2RuCl(p-cymene)]1.5H2O (2), were synthesized. The structures of Schiff bases and their RuIIp‐cymene complexes were elucidated using microanalysis, magnetic susceptibility, molar conductivity, 1H-NMR, 13C-NMR, FT-IR, UV–Vis, LC–MS, and thermogravimetric analysis techniques. Octahedral structures for the obtained RuIIp‐cymene complexes were proposed. The catalytic activities of the RuIIp‐cymene complexes obtained after the characterization processes were investigated by using acetophenone derivatives in the transfer hydrogen reactions. The product conversions obtained as a result of catalytic studies were determined using GC–MS. When 4-bromoacetophenone was used as a substrate in the transfer hydrogen reactions, catalysts 1 and 2 showed good catalytic activity of 93% and 96%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rodrigues C, Delolo FG, Ferreira LM, Maia PIS, Deflon VM, Rabeah J, Brückner A, Norinder J, Börner A, Bogado AL, Batista AA (2016) J Mol Struct 1111:84. https://doi.org/10.1016/j.molcata.2016.09.020

    Article  CAS  Google Scholar 

  2. Aydemir M, Meric N, Baysal A, Turgut Y, Kayan C, Şeker S, Toğrul M, Gümgüm BJ (2011) Organomet Chem 696:1541–1546. https://doi.org/10.1016/j.jorganchem.2010.12.027

    Article  CAS  Google Scholar 

  3. Wu Z, Jiang H (2015) RSC Adv 5:34622. https://doi.org/10.1039/C5RA01893E

    Article  CAS  Google Scholar 

  4. Kenny RG, Marmion CJ (2019) Chem Rev 119:1058–1137. https://doi.org/10.1021/acs.chemrev.8b00271

    Article  CAS  PubMed  Google Scholar 

  5. Yang SH, Chang S (2001) Org Lett 3:4209–4211. https://doi.org/10.1021/ol0168768

    Article  CAS  PubMed  Google Scholar 

  6. Murugan K, Vijayapritha S, Kavitha V, Viswanathamurthi P (2020) Polyhedron 190:114737. https://doi.org/10.1016/j.poly.2020.114737

    Article  CAS  Google Scholar 

  7. Wang H-X, Wu K, Che C-M (2021) Synlett 32:249–257. https://doi.org/10.1055/s-0040-1707221

    Article  CAS  Google Scholar 

  8. Battilocchio C, Hawkins JM, Ley SV (2013) Org Lett 15:2278–2281. https://doi.org/10.1021/ol400856g

    Article  CAS  PubMed  Google Scholar 

  9. Kilbas B, Yilmaz YE, Ergen S (2018) CR Chim 1:880–883. https://doi.org/10.1016/j.crci.2018.07.004

    Article  CAS  Google Scholar 

  10. Jia W-G, Zhang H, Zhang T, Xie D, Ling S, Sheng E-H (2016) Organometallics 35(4):503–512. https://doi.org/10.1021/acs.organomet.5b00933

    Article  CAS  Google Scholar 

  11. Anh NH, Loi H (2020) Inorg Chem Front 7:583–591

    Article  Google Scholar 

  12. Buldurun K, Turan N, Mahmoudi G, Bursal E (2022) J Mol Struct 1262:133075. https://doi.org/10.1016/j.molstruc.2022.133075

    Article  CAS  Google Scholar 

  13. Turan N, Buldurun K, Alan Y, Savci A, Çolak N, Mantarcı A (2019) Res Chem Intermed 45:3525–3540. https://doi.org/10.1007/s11164-019-03806-3

    Article  CAS  Google Scholar 

  14. Turan N, Buldurun K, Çolak N, Özdemir İ (2019) Open Chem 17(1):571–580. https://doi.org/10.1515/chem-2019-0074

    Article  CAS  Google Scholar 

  15. Akdeniz A (2022) Master Thesis, Natural, and Applied Science, Muş Alparslan University, Muş/Turkey

  16. Sedighipoor M, Kianfara AH, Mohammadnezhad G, Görls H, Plass W (2018) Inorg Chim Acta 476:20–26. https://doi.org/10.1016/j.ica.2018.02.007

    Article  CAS  Google Scholar 

  17. Buldurun K, Özdemir M (2020) J Mol Struct 1202:127266. https://doi.org/10.1016/j.molstruc.2019.127266

    Article  CAS  Google Scholar 

  18. Turan N, Buldurun K, Adiguzel R, Aras A, Turkan F, Bursal E (2021) J Mol Struct 1244:130989. https://doi.org/10.1016/j.molstruc.2021.130989

    Article  CAS  Google Scholar 

  19. Srivastava VK (2021) Future J Pharm Sci 7:51. https://doi.org/10.1186/s43094-021-00191-w

    Article  Google Scholar 

  20. Liu J, Lin Y, Liu M, Wang S, Li Y, Liu X, Tian L (2019) Appl Organomet Chem 33:e4715. https://doi.org/10.1002/aoc.4715

    Article  CAS  Google Scholar 

  21. Çolak N, Karayel A, Buldurun K, Turan N (2021) J Struct Chem 62:37–46. https://doi.org/10.1134/S0022476621010054

    Article  Google Scholar 

  22. Han Y-F, Li H, Fei Y, Lin Y-J, Zhang W-Z, Jin G-X (2010) Dalton Trans 39:7119–7124. https://doi.org/10.1039/C0DT00057D

    Article  CAS  PubMed  Google Scholar 

  23. Purkait K, Mukherjee A (2020) Inorg Chim Acta 502:119361. https://doi.org/10.1016/j.ica.2019.119361

    Article  CAS  Google Scholar 

  24. Alomar K, Khan MA, Allain M, Bouet G (2009) Polyhedron 28:1273–1280. https://doi.org/10.1016/j.poly.2009.02.042

    Article  CAS  Google Scholar 

  25. Salavati-Niasari M, Davar F, Saberyan K (2010) Polyhedron 29(10):2149–2156. https://doi.org/10.1016/j.poly.2010.04.003

    Article  CAS  Google Scholar 

  26. El-Gammal OA, Elmorsy EA, Sherif YE (2014) Spectrochim Acta A 120:332–339. https://doi.org/10.1016/j.saa.2013.09.067

    Article  CAS  Google Scholar 

  27. Starha P, Travnicek Z, Krikavova R, Dvorak Z (2016) Molecules 21:1725. https://doi.org/10.3390/molecules21121725

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pandiarajan D, Ramesh R (2013) J Organomet Chem 723:26–35. https://doi.org/10.1016/j.jorganchem.2012.10.003

    Article  CAS  Google Scholar 

  29. Ramesh M, Venkatachalam G (2019) J Organomet Chem 880:47–55. https://doi.org/10.1016/j.jorganchem.2018.10.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extent their appreciation to the Muş Alparslan University Scientific Research Projects Center (BAP) under research project no BAP-20-FEF-4902-06 for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevin Turan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6299 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turan, N., Akdeniz, A. Synthesis, Structural Characterization of Schiff Base Ligands and Their RuIIp‐Cymene Complexes, and Catalytic Activity in the Transfer Hydrogenation of Ketones. Catal Lett 153, 3009–3018 (2023). https://doi.org/10.1007/s10562-022-04222-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04222-w

Keywords

Navigation