Skip to main content
Log in

The Synthesis of a Novel Ternary Bi/Bi2WO6/Amorphous Bi4V2O11 Heterojunction Photocatalyst with Enhanced Visible-Light-Driven Photocatalytic Reduction of Cr(VI)

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Herein, a novel ternary Bi/Bi2WO6/amorphous Bi4V2O11 heterojunction photocatalyst was first synthesized via a facile one-pot solvothermal approach using ethylene glycol as a reaction medium. In this ternary heterojunction system, highly homogeneous-dispersed metal Bi and Bi2WO6 nanoparticles were supported on amorphous Bi4V2O11 flakes. Because of the Surface Plasmon Resonance (SPR) efficiency of metal Bi nanoparticles, as-fabricated Bi/Bi2WO6/amorphous Bi4V2O11 heterojunction photocatalyst exhibited a strong light absorbance capacity in the visible-light and near-infrared light range, which can be verified by UV–vis diffuse reflectance spectra measurements. The Bi/Bi2WO6/amorphous Bi4V2O11 heterojunction photocatalyst showed remarkably enhanced photocatalytic activity toward the photoreduction of heavy metal ion Cr(VI) and the photodegradation of MB under visible-light irradiation. The drastically enhanced photocatalytic activity in the ternary Bi/Bi2WO6/amorphous Bi4V2O11 system could be attributed to the SPR effect of metal Bi and the promoted separation and transport efficiency of photo-induced charge carriers stemming from the construction of ternary heterojunction. Moreover, Bi/Bi2WO6/amorphous Bi4V2O11 heterojunctions exhibited a good cycling stability for Cr(VI) reduction after 5 cycles. This study may be supply new insight into the fabrication of highly efficient and stable Bi4V2O11-based photocatalysts, and it is expected to have certain theoretical and experimental value in the design and exploitation of novel heterojunction photocatalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. Zhu S, Wang D (2017) Adv Energy Mater 7:1700841–1700865

    Article  Google Scholar 

  2. Tahir MB, Kiran H, Iqbal T (2019) Environ Sci Pollut Res 26:10515–10528

    Article  CAS  Google Scholar 

  3. Verma M, Haritash AK (2020) Environ Tech Innovation 20:101072

    Article  CAS  Google Scholar 

  4. Al-Mamun MR, Kader S, Islam MS (2019) J Environ Chem Eng 7:103248

    Article  CAS  Google Scholar 

  5. Natarajan TS, Tayade RJ (2021) J Nanopart Res 23:127

    Article  CAS  Google Scholar 

  6. Xu YF, Zhou Y, Deng YH et al (2020) Catal Lett 150:3470–3480

    Article  CAS  Google Scholar 

  7. Morais E, Stanley K, Thampi KR et al (2021) Catal Lett 151:293–305

    Article  CAS  Google Scholar 

  8. Long ZQ, Xian G, Zhang GM et al (2020) Chinese J Catal 41:464–473

    Article  CAS  Google Scholar 

  9. Bao E-P, Dong R, Zhang S et al (2021) Catals Lett 151:3437–3450

    Article  CAS  Google Scholar 

  10. Selvi MH, Vanga PR, Harinee S et al (2020) Res Chem Intermed 46:1165–1181

    Article  Google Scholar 

  11. Zargoosh K, Rostami M, Aliabadi HM (2020) J Mater Sci: Mater Electron 31:11482

    CAS  Google Scholar 

  12. Li Z, Zhu XiaoMei, Liu H et al (2021) J Nanopar Res 23:246

    Article  CAS  Google Scholar 

  13. Li K, Ji M, Chen R et al (2020) Chin J Catal 41:1230–1239

    Article  CAS  Google Scholar 

  14. Chang L, Zhu G, Huan Lu et al (2018) Catal Lett 148:2765–2776

    Article  CAS  Google Scholar 

  15. Zhang B, Li M, Wang X, Zhao Y, Wang H (2018) Res Chem Intermed 44:6895–6906

    Article  CAS  Google Scholar 

  16. Yang Y, Zhu Y, Ye X et al (2021) Catal Lett 151:359–369

    Article  CAS  Google Scholar 

  17. Wang P, Zhao H, Li S et al (2021) J Mater Sci 56:8060–8078

    Article  CAS  Google Scholar 

  18. Linying H, Jing X, Zhao S et al (2021) Catal Lett 151:2658–2672

    Article  Google Scholar 

  19. Liu G, Wang X, Liu X et al (2020) J Mater Sci 55:10453–10465

    Article  CAS  Google Scholar 

  20. Wang L, Yang G, Wang D et al (2019) Appl Surf Sci 495:143521

    Article  CAS  Google Scholar 

  21. Bai J, Shen R, Jiang Z et al (2022) Chin J Catal 43:359–369

    Article  CAS  Google Scholar 

  22. Li S, Cai M, Liu Y et al (2022) Inorg Chem Front 9:2479–2497

    Article  CAS  Google Scholar 

  23. Changyu Lu, Yang D, Wang L et al (2022) J Alloys Compd 904:164046

    Article  Google Scholar 

  24. Wu ZS, Chen XQ, Liu XC et al (2019) Nanoscale Res Lett 14:147

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bai YC, Wang TY, Zhao XY et al (2021) J Mater Sci: Mater Electron 31:17524

    Google Scholar 

  26. Li K, Chen J, Ao Y et al (2021) Sep purif Technol 259:118177

    Article  CAS  Google Scholar 

  27. Jin J, Hui C, Liu C et al (2017) Appl Phys A 123:521

    Article  Google Scholar 

  28. Ghafourian N, lashanizadegan M (2017) Int J Environ Sci Tech 14:2721–2732

    Article  CAS  Google Scholar 

  29. Wahyuni ET, Roto R, Novarita D (2019) J Environ Chem Eng 7:103178

    Article  CAS  Google Scholar 

  30. Miao H, Yang J, Wei Y et al (2018) Appl Catal B: Environ 239:61–67

    Article  CAS  Google Scholar 

  31. Alahmadi N, Amin MS (2020) J Nanopart Res 22:230

    Article  CAS  Google Scholar 

  32. Dong F, Zhao Z, Sun Y, Zhang Y et al (2015) Environ Sci Tech 49:12432–12440

    Article  CAS  Google Scholar 

  33. Dong F, Li Q, Sun Y, Ho WK et al (2014) ACS Catal 4:4341–4350

    Article  CAS  Google Scholar 

  34. Qingqing Yu, Chen J, Li Y et al (2020) Chinese J Catal 41:1603–1612

    Article  Google Scholar 

  35. Lee SH, Lee KH, Kim WD et al (2014) J Phys Chem C 118:23627–23634

    Article  CAS  Google Scholar 

  36. Harun T, Chan CK (2013) Nano Energy 2:116–123

    Article  Google Scholar 

  37. Guo SY, Han S, Chi B et al (2014) ACS Appl Mater Interfaces 6:4743–4751

    Article  CAS  PubMed  Google Scholar 

  38. Wang XJ, Yang WY, Li FT et al (2015) J Hazar Mater 292:126–136

    Article  CAS  Google Scholar 

  39. Lv CD, Chen G, Sun JX et al (2015) Appl Catal B: Environ 179:54–60

    Article  CAS  Google Scholar 

  40. Ri CN, Kim SG, Jong JY et al (2018) New J Chem 42:647–653

    Article  CAS  Google Scholar 

  41. Ri CN, Kim SG, Ju KS et al (2018) RSC Adv 8:5433–5440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Di J, Xia JX, Ji MX et al (2015) Nanoscale 7:11433

    Article  CAS  PubMed  Google Scholar 

  43. Guo YX, Zhang YH, Tian N et al (2016) ACS Sustainable Chem Eng 4:4003–4012

    Article  CAS  Google Scholar 

  44. Etogo A, Liu R, Ren JB et al (2016) J Mater Chem A 4:13242

    Article  CAS  Google Scholar 

  45. Moniz SJA, Shevlin SA (2015) Energy Environ Sci 8:731–759

    Article  CAS  Google Scholar 

  46. Yu Y, Cao C, Liu H et al (2014) J Mater Chem A 2:1677

    Article  CAS  Google Scholar 

  47. Zhang P, Zhu Y, Zhang Y et al (2021) Appl Phys A 127:330

    Article  CAS  Google Scholar 

  48. Zhang Q, Chen J, Gao X et al (2022) Appl Catal B: Environ 313:121443

    Article  CAS  Google Scholar 

  49. Chang C, Zhu L (2013) Chem Eng J 233:305–314

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the State Committee of Science and Technology, Democratic People’s Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chol-Nam Ri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2028 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ri, CN., Hwang, KJ., Kim, TN. et al. The Synthesis of a Novel Ternary Bi/Bi2WO6/Amorphous Bi4V2O11 Heterojunction Photocatalyst with Enhanced Visible-Light-Driven Photocatalytic Reduction of Cr(VI). Catal Lett 153, 2927–2935 (2023). https://doi.org/10.1007/s10562-022-04216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04216-8

Keywords

Navigation