Skip to main content
Log in

Scope for Spherical Bi2WO6 Quazi-Perovskites in the Artificial Photosynthesis Reaction—The Effects of Surface Modification with Amine Groups

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The synthesis, characterisation, modification (with n-propyl amine groups) of Bi2WO6 particles and the scope for their application in artificial photosynthesis reactions is described. The synthesis involves microwave activation of spherical Bi2O3 precursors followed by a hydrothermal treatment in the presence of Na2WO4. These are characterised using electron microscopy (TEM and SEM), BET, XRD, FTIR, FT-Raman and UV–Visible spectroscopies and CO2 TPD. Subsequently this material is modified through the condensation of propyl amine groups to surface hydroxyl groups, and the composites prepared are characterised using FTIR and D-FTIR following exposure to CO2. Both the spherical particles and the amine-modified analogues are applied in the artificial photosynthesis reaction under batch conditions. O2, CO and CH4 are the observed gaseous products during the reaction and there is FTIR evidence for the formation of adsorbed alcohols and carbonylated products. Although the modification with amine groups decreased the overall photocatalytic reactivity, it also altered the product selectivity with respect to the CH4/CO ratio. The catalyst tends to improve the oxygen production ability after about 20 h of operation, with a decline in CH4 and CO production, indicating that other condensates are probably generated. This opens up new possibilities and scope for this catalyst and further research is required to understand the observations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agency EP (2016) Atmospheric Concentrations of Greenhouse Gases. 1–13

  2. Yamasaki A (2003) An overview of CO2 mitigation options for global warming—emphasizing CO2 sequestration options. J Chem Eng Japan J Rev 36:361–375

    Article  CAS  Google Scholar 

  3. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira De Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148. https://doi.org/10.1038/nature02121

    Article  CAS  Google Scholar 

  4. IPCC (2017) Progress report: IPCC expert meeting on mitigation, sustainability and climate stabilization scenarios. IPCC, Geneva

    Google Scholar 

  5. IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  6. International Energy Agency (2016) Energy statistics. International Energy Agency, Paris

    Google Scholar 

  7. Albarrán-Zavala E, Angulo-Brown F (2007) A simple thermodynamic analysis of photosynthesis. Entropy 9:152–168. https://doi.org/10.3390/e9040152

    Article  Google Scholar 

  8. Morais E, Ravindranathan Thampi K, Sullivan JA (2020) Photo-dissociation of CO2 over plasmonic RuO2 nanoparticles. ChemistrySelect 5:3069–3074. https://doi.org/10.1002/slct.202000161

    Article  CAS  Google Scholar 

  9. Etiope G, Ionescu A (2015) Low-temperature catalytic CO2 hydrogenation with geological quantities of ruthenium: a possible abiotic CO4 source in chromitite-rich serpentinized rocks. Geofluids 15:438–452. https://doi.org/10.1111/gfl.12106

    Article  CAS  Google Scholar 

  10. Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278. https://doi.org/10.1021/nn9015423

    Article  CAS  PubMed  Google Scholar 

  11. Kopyscinski J, Schildhauer TJ, Biollaz SM (2010) Production of synthetic natural gas (SNG) from coal and dry biomass—a technology review from 1950 to 2009. Fuel 89:1763–1783. https://doi.org/10.1016/j.fuel.2010.01.027

    Article  CAS  Google Scholar 

  12. Alper E, Yuksel Orhan O (2017) CO2 utilization: developments in conversion processes. Petroleum 3:109–126. https://doi.org/10.1016/j.petlm.2016.11.003

    Article  Google Scholar 

  13. Kim C, Hyeon S, Lee J, Kim WD, Lee DC, Kim J, Lee H (2018) Energy-efficient CO2 hydrogenation with fast response using photoexcitation of CO2 adsorbed on metal catalysts. Nat Commun 9:3027. https://doi.org/10.1038/s41467-018-05542-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tahir M, Amin NS (2013) Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Convers Manag 76:194–214. https://doi.org/10.1016/j.enconman.2013.07.046

    Article  CAS  Google Scholar 

  15. Fan W, Zhang Q, Wang Y (2013) Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys Chem Chem Phys 15:2632. https://doi.org/10.1039/c2cp43524a

    Article  CAS  PubMed  Google Scholar 

  16. Dhakshinamoorthy A, Navalon S, Corma A, Garcia H (2012) Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ Sci 5:9217. https://doi.org/10.1039/c2ee21948d

    Article  CAS  Google Scholar 

  17. Morais E, O’Modhrain C, Ravindranathan KT, James SA (2019) Visible light-driven gas-phase artificial photosynthesis reactions over ruthenium metal nanoparticles modified with anatase TiO2. Int J Photoenergy 2019:1–10. https://doi.org/10.1155/2019/3651603

    Article  CAS  Google Scholar 

  18. Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8:506–514. https://doi.org/10.1038/nphoton.2014.134

    Article  CAS  Google Scholar 

  19. Ramirez AP (1997) Colossal magnetoresistance. J Phys Condens Matter 9:8171

    Article  CAS  Google Scholar 

  20. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051. https://doi.org/10.1021/ja809598r

    Article  CAS  PubMed  Google Scholar 

  21. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647. https://doi.org/10.1126/science.1228604

    Article  CAS  PubMed  Google Scholar 

  22. Vashook V, Gerlach F, Guth U, Zosel J, Ahlborn K, Franke D (2008) Perovskite related electrode materials with enhanced NO sensitivity for mixed potential sensors. Solid State Ionics 179:1628–1631. https://doi.org/10.1016/j.ssi.2008.01.044

    Article  CAS  Google Scholar 

  23. Hao F, Stoumpos CC, Liu Z, Chang RPH, Kanatzidis MG (2014) Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J Am Chem Soc 136:16411–16419. https://doi.org/10.1021/ja509245x

    Article  CAS  PubMed  Google Scholar 

  24. Veldhuis SA, Boix PP, Yantara N, Li M, Sum TC, Mathews N, Mhaisalkar SG (2016) Perovskite materials for light-emitting diodes and lasers. Adv Mater 28:6804–6834. https://doi.org/10.1002/adma.201600669

    Article  CAS  PubMed  Google Scholar 

  25. Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52:9019–9038. https://doi.org/10.1021/ic401215x

    Article  CAS  PubMed  Google Scholar 

  26. Zhao Y, Zhu K (2016) Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev 45:655–689

    Article  CAS  Google Scholar 

  27. Grimaud A, May KJ, Carlton CE, Lee Y-L, Risch M, Hong WT, Zhou J, Shao-Horn Y (2013) Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat Commun 4:2439. https://doi.org/10.1038/ncomms3439

    Article  CAS  PubMed  Google Scholar 

  28. Royer S, Duprez D, Can F, Courtois X, Batiot-Dupeyrat C, Laassiri S, Alamdari H (2014) Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem Rev 114:10292–10368. https://doi.org/10.1021/cr500032a

    Article  CAS  PubMed  Google Scholar 

  29. Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum TC (2014) Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater 13:476–480. https://doi.org/10.1038/nmat3911

    Article  CAS  PubMed  Google Scholar 

  30. Kendall KR, Navas C, Thomas JK, Zur Loye HC (1996) Recent developments in oxide ion conductors: Aurivillius phases. Chem Mater 8:642–649. https://doi.org/10.1021/cm9503083

    Article  CAS  Google Scholar 

  31. Sun S, Chen Z, Wang G, Geng X, Xiao Z, Sun Z, Sun Z, Peng R, Lu Y (2018) Nanoscale structural modulation and lowerature magnetic response in mixed-layer Aurivillius-type oxides. Sci Rep 8:871. https://doi.org/10.1038/s41598-018-19448-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kudo A, Hijii S (1999) H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem Lett 28:1103–1104. https://doi.org/10.1246/cl.1999.1103

    Article  Google Scholar 

  33. Chen M, Chu W (2012) Efficient degradation of an antibiotic norfloxacin in aqueous solution via a simulated solar-light-mediated Bi2WO6 process. Ind Eng Chem Res 51:4887–4893. https://doi.org/10.1021/ie300146h

    Article  CAS  Google Scholar 

  34. Liu Y, Ding Z, Lv H, Guang J, Li S, Jiang J (2015) Hydrothermal synthesis of hierarchical flower-like Bi2WO6 microspheres with enhanced visible-light photoactivity. Mater Lett 157:158–162. https://doi.org/10.1016/j.matlet.2015.05.024

    Article  CAS  Google Scholar 

  35. Sun Z, Yang Z, Liu H, Wang H, Wu Z (2014) Visible-light CO2 photocatalytic reduction performance of ball-flower-like Bi2WO6 synthesized without organic precursor: effect of post-calcination and water vapor. Appl Surf Sci 315:360–367. https://doi.org/10.1016/j.apsusc.2014.07.153

    Article  CAS  Google Scholar 

  36. Liang L, Lei F, Gao S, Sun Y, Jiao X, Wu J, Qamar S, Xie Y (2015) Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol. Angew Chemie - Int Ed 54:13971–13974. https://doi.org/10.1002/anie.201506966

    Article  CAS  Google Scholar 

  37. Qamar M, Khan A (2014) Mesoporous hierarchical bismuth tungstate as a highly efficient visible-light-driven photocatalyst. RSC Adv 4:9542–9550. https://doi.org/10.1039/c3ra45948a

    Article  CAS  Google Scholar 

  38. Cheng H, Huang B, Liu Y, Wang Z, Qin X, Zhang X, Dai Y (2012) An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. Chem Commun 48:9729. https://doi.org/10.1039/c2cc35289c

    Article  CAS  Google Scholar 

  39. Liu S-J, Hou Y-F, Zheng S-L, Zhang Y, Wang Y (2013) One-dimensional hierarchical Bi2WO6 hollow tubes with porous walls: synthesis and photocatalytic property. CrystEngComm 15:4124. https://doi.org/10.1039/c3ce40237a

    Article  CAS  Google Scholar 

  40. Wang X, Chang L, Wang J, Song N, Liu H, Wan X (2013) Facile hydrothermal synthesis of Bi2WO6 microdiscs with enhanced photocatalytic activity. Appl Surf Sci 270:685–689. https://doi.org/10.1016/j.apsusc.2013.01.121

    Article  CAS  Google Scholar 

  41. Fu H, Zhang L, Yao W, Zhu Y (2006) Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process. Appl Catal B Environ 66:100–110. https://doi.org/10.1016/j.apcatb.2006.02.022

    Article  CAS  Google Scholar 

  42. Wang Q, Wang K, Zhang L, Wang H, Wang W (2019) Photocatalytic reduction of CO2 to methane over PtOx-loaded ultrathin Bi2WO6 nanosheets. Appl Surf Sci 470:832–839. https://doi.org/10.1016/j.apsusc.2018.11.197

    Article  CAS  Google Scholar 

  43. Xiao X, Hu R, Liu C, Xing C, Qian C, Zuo X, Nan J, Wang L (2013) Facile large-scale synthesis of β-Bi2O3 nanospheres as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation. Appl Catal B Environ 140–141:433–443. https://doi.org/10.1016/j.apcatb.2013.04.037

    Article  CAS  Google Scholar 

  44. Hou Y-F, Liu S-J, Zhang J, Cheng X, Wang Y (2014) Facile hydrothermal synthesis of TiO2–Bi2WO6 hollow superstructures with excellent photocatalysis and recycle properties. Dalt Trans 43:1025–1031. https://doi.org/10.1039/C3DT52046C

    Article  CAS  Google Scholar 

  45. Zhang L, Zhu Y (2012) A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts. Catal Sci Technol 2:694–706

    Article  CAS  Google Scholar 

  46. Zhang L, Wang W, Zhou L, Xu H (2007) Bi2WO6 nano- and microstructures: Shape control and associated visible-light-driven photocatalytic activities. Small 3:1618–1625. https://doi.org/10.1002/smll.200700043

    Article  CAS  PubMed  Google Scholar 

  47. Li J-Q, Guo Z-Y, Yu H-G, Liu H, Wang D-F, Zhu Z-F (2012) Visible-light-induced degradation of methylene blue by mesoporous Bi2WO6 plates with worm-like structure. Micro Nano Lett 7:52. https://doi.org/10.1049/mnl.2011.0642

    Article  CAS  Google Scholar 

  48. Kania A, Talik E, Szubka M et al (2016) Characterization of Bi2WO6 single crystals by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and optical absorption. J Alloys Compd 654:467–474. https://doi.org/10.1016/j.jallcom.2015.09.127

    Article  CAS  Google Scholar 

  49. Wang Y, Herron N (1991) Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 95:525–532

    Article  CAS  Google Scholar 

  50. Palimi MJ, Rostami M, Mahdavian M, Ramezanzadeh B (2014) Surface modification of Cr2O3 nanoparticles with 3-amino propyl trimethoxy silane (APTMS). Part 1: studying the mechanical properties of polyurethane/Cr2O3 nanocomposites. Prog Org Coatings 77:1663–1673. https://doi.org/10.1016/j.porgcoat.2014.05.010

    Article  CAS  Google Scholar 

  51. Zeynizadeh B, Sepehraddin F (2017) Synthesis and characterization of magnetically nanoparticles of Fe3O4@APTMS@ZrCp2 as a novel and reusable catalyst for convenient reduction of nitro compounds with glycerol. J Iran Chem Soc 14:2649–2657. https://doi.org/10.1007/s13738-017-1199-5

    Article  CAS  Google Scholar 

  52. Chattopadhyay DK, Zakula AD, Webster DC (2009) Organic-inorganic hybrid coatings prepared from glycidyl carbamate resin, 3-aminopropyl trimethoxy silane and tetraethoxyorthosilicate. Prog Org Coatings 64:128–137. https://doi.org/10.1016/j.porgcoat.2008.09.008

    Article  CAS  Google Scholar 

  53. Vieira RB, Pastore HO (2018) Soft-pillared@magadiite: influence of the interlayer space and amine type on CO2 adsorption. Dalt Trans 47:3102–3111. https://doi.org/10.1039/c7dt03732e

    Article  CAS  Google Scholar 

  54. Wang X, Song C (2012) Temperature-programmed desorption of CO2 from polyethylenimine-loaded SBA-15 as molecular basket sorbents. Catal Today 194:44–52

    Article  CAS  Google Scholar 

  55. Huang HY, Yang RT, Chinn D, Munson CL (2003) Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind Eng Chem Res 42:2427–2433. https://doi.org/10.1021/ie020440u

    Article  CAS  Google Scholar 

  56. Graves PR, Hua G, Myhra S, Thompson JG (1995) The Raman Modes of the Aurivillius phases: temperature and polarization dependence. J Solid State Chem 114:112–122. https://doi.org/10.1006/jssc.1995.1017

    Article  CAS  Google Scholar 

  57. Riegel B, Hartmann I, Kiefer W, Groβ J, Fricke J (1997) Raman spectroscopy on silica aerogels. J Non Cryst Solids 211:294–298. https://doi.org/10.1016/S0022-3093(96)00639-4

    Article  CAS  Google Scholar 

  58. Guo Y, Zhang G, Gan H (2012) Synthesis, characterization and visible light photocatalytic properties of Bi2WO6/rectorite composites. J Colloid Interface Sci 369:323–329. https://doi.org/10.1016/j.jcis.2011.11.066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

EM is funded by Coordenação de Aperfeicoamento de Pessoal de Nível Superior (CAPES) through the ‘Science without Borders (SwB) scheme’ supported by the Brazilian Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Ravindranathan Thampi or James A. Sullivan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morais, E., Stanley, K., Thampi, K.R. et al. Scope for Spherical Bi2WO6 Quazi-Perovskites in the Artificial Photosynthesis Reaction—The Effects of Surface Modification with Amine Groups. Catal Lett 151, 293–305 (2021). https://doi.org/10.1007/s10562-020-03299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03299-5

Keywords

Navigation