Skip to main content

Advertisement

Log in

Triazole Appended Metal–Organic Framework for CO2 Fixation as Cyclic Carbonates Under Solvent-Free Ambient Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

One of the efficient approaches to achieving net-zero greenhouse gas emissions is the 100% atom-economical conversion of the greenhouse gas carbon dioxide (CO2) to cost-effective, less toxic cyclic carbonates that can act as green solvents and abundant C1 synthon in organic synthesis. In this work, we have synthesized an Indium Metal–Organic Framework (MOF), functionalized with triazole MIL-68(In)-NHTr (Tr = 1-methylene-1,2,4-triazole) as a bifunctional catalyst for the synthesis of cyclic carbonates from epoxides with high yield (96%) and selectivity (100%) under solvent-free ambient reaction conditions (CO2 pressure 1 bar, temperature 50 °C, and reaction time 6 h). The synergistic acid–base effect of Indium SBU and the triazole of MIL-68(In)-NHTr make this a better catalyst than the conventional MIL-68(In)-NH2. This new catalyst was non-leachable and was reusable for six consecutive catalytic cycles without appreciable loss in the catalytic efficiency and crystallinity of the MOF framework.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jacobson MZ (2009) Energy Environ Sci 2:148–173

    Article  CAS  Google Scholar 

  2. Peter SC (2018) ACS Energy Lett 3:1557–1561

    Article  CAS  Google Scholar 

  3. Jones WD (2020) J Am Chem Soc 142:4955–4957

    Article  CAS  PubMed  Google Scholar 

  4. Singh Dhankhar S, Ugale B, Nagaraja CM (2020) Chem Asian J 15:2403–2427

    Article  CAS  PubMed  Google Scholar 

  5. Pal TK, De D, Bharadwaj PK (2020) Coord Chem Rev 408:213173

    Article  CAS  Google Scholar 

  6. Grignard B, Gennen S, Jerome C, Kleij AW, Detrembleur C (2019) Chem Soc Rev 48:4466–4514

    Article  CAS  PubMed  Google Scholar 

  7. Sharma N, Dhankhar SS (2019) Nagaraja C M Sustain. Energy Fuels 3:2977–2982

    CAS  Google Scholar 

  8. Hanusch JM, Kerschgens IP, Huber F, Neuburger M, Gademann K (2019) Chem Commun 55:949–952

    Article  CAS  Google Scholar 

  9. Justin A, Espín J, Kochetygov I, Asgari M, Trukhina O, Queen WL (2021) Inorg Chem 60:11720–11729

    Article  CAS  PubMed  Google Scholar 

  10. Barzagli F, Mani F, Peruzzini M (2016) J CO2 Util 13:81–89. https://doi.org/10.1016/j.jcou.2015.12.006

    Article  CAS  Google Scholar 

  11. Chen Y, Mu T (2019) Green Chem 21:2544–2574

    Article  CAS  Google Scholar 

  12. Tomishige K, Tamura M, Nakagawa Y (2019) Chem Rec 19:1354–1379

    Article  CAS  PubMed  Google Scholar 

  13. Bai X, Chen W, Zhao C, Li S, Song Y, Ge R, Wei W, Sun Y (2017) Angew Chem Int Ed 56:12219–12223

    Article  CAS  Google Scholar 

  14. Kwok KM, Chen L, Zeng HC (2020) J Mater Chem A 8:12757–12766

    Article  CAS  Google Scholar 

  15. Sakakura T, Choi JC, Yasuda H (2007) Chem Rev 107:2365–2387

    Article  CAS  PubMed  Google Scholar 

  16. He H, Perman JA, Zhu G, Ma S (2016) Small 12:6309–6324

    Article  CAS  PubMed  Google Scholar 

  17. Parker HL, Sherwood J, Hunt AJ, Clark JHACS (2014) Sustainable Chem Eng 2:1739–1742

    Article  CAS  Google Scholar 

  18. Zhao H, Park S–J, Shi F, Fu Y, Battaglia V, Ross PN, Liu G (2013) J Electrochem Soc 161:194–200

    Article  Google Scholar 

  19. Kamphuis AJ, Picchioni F, Pescarmona PP (2019) Green Chem 21:406–448

    Article  CAS  Google Scholar 

  20. Bobbink FDA, Muyden P, Dyson PJ (2019) Chem Commun 55:1360–1373

    Article  CAS  Google Scholar 

  21. Wang L, Kodama K, Hirose T (2016) Catal Sci Technol 6:3872–3877

    Article  CAS  Google Scholar 

  22. Chen G, Zhang Y, Xu J, Liu X, Liu K, Tong M, Long Z (2020) J Chem Eng 381:122765

    Article  CAS  Google Scholar 

  23. Guo F, Zhang X (2020) Dalton Trans 49:9935–9947

    Article  CAS  PubMed  Google Scholar 

  24. Molla RA, Iqubal A, Ghosh K, Islam M (2016) ChemistrySelect 1:3100–3107

    Article  CAS  Google Scholar 

  25. Srivastava R, Srinivas D, Ratnasamy PJ (2005) J Catal 233:1–15

    Article  CAS  Google Scholar 

  26. Kulal N, Vasista V, Shanbhag GV (2019) J CO2 Util 33:434–444

    Article  CAS  Google Scholar 

  27. Li CG, Xu L, Wu P, Wu H, He M (2014) Chem Commun 50:15764–15767

    Article  CAS  Google Scholar 

  28. Zhang Y, Luo N, Xu J, Liu K, Zhang S, Xu Q, Long J, Tong M, Chen G (2020) Dalton Trans 49:11300–11309

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Liu K, Wu L, Xu Z, Long Z, Tong M, Gu Y, Qin Z, Chen G (2021) Dalton Trans 50:11878–11888

    Article  CAS  PubMed  Google Scholar 

  30. Ding M, Flaig RW, Jiang HL, Yaghi OM (2019) Chem Soc Rev 48:2783–2828

    Article  CAS  PubMed  Google Scholar 

  31. Varnaseri N, Rouhani F, Ramazani A, Morsali A (2020) Dalton Trans 49:3234–3242

    Article  CAS  PubMed  Google Scholar 

  32. Helal A, Nguyen HL, Al-Ahmed A, Cordova KE, Yamani ZH (2019) Inorg Chem 58:1738–1741

    Article  CAS  PubMed  Google Scholar 

  33. Trickett CA, Helal A, Al-Maythalony BA, Yamani ZH, Cordova KE, Yaghi OM (2017) Nat Rev Mater 2:17045

    Article  CAS  Google Scholar 

  34. Lian X, Huang Y, Zhu Y, Fang Y, Zhao R, Joseph E, Li J, Pellois JP, Zhou HC (2018) Angew Chem Int Ed 57:5725–5730

    Article  CAS  Google Scholar 

  35. Song J, Zhang Z, Hu S, Wu T, Jiang T, Han B (2009) Green Chem 11:1031–1036

    Article  CAS  Google Scholar 

  36. Beyzavi MH, Stephenson CJ, Liu Y, Karagiaridi O, Hupp JT, Farha OK (2015) Front Energy Res 2:1–10

    Google Scholar 

  37. Qian J, Jiang F, Su K, Pan J, Xue Z, Liang L, Bag PP, Hong M (2014) Chem Commun 50:15224–15227

    Article  CAS  Google Scholar 

  38. Gu JM, Kim SJ, Kim Y, Huh S (2012) CrystEngComm 14:1819

    Article  CAS  Google Scholar 

  39. Jin Z, Zhao HY, Zhao XJ, Fang QR, Long JR, Zhu GS (2010) Chem Commun 46:8612

    Article  CAS  Google Scholar 

  40. Gu X, Lu ZH, Xu Q (2010) Chem Commun 46:7400

    Article  CAS  Google Scholar 

  41. Brandão P, Burke AJ, Pineiro M (2020) Eur J Org Chem 2020:5501–5513

    Article  Google Scholar 

  42. Ji H, Naveen K, Lee W, Kim TS, Kim D, Cho DH (2020) ACS Appl Mater Interfac 12:24868–24876

    Article  CAS  Google Scholar 

  43. Liang J, Chen RP, Wang XY, Liu TT, Wang XS, Huang YB, Cao R (2017) Chem Sci 8:1570

    Article  CAS  PubMed  Google Scholar 

  44. Gupta V, Mandal SK (2020) Chem Eur 26:2658–2665

    Article  CAS  Google Scholar 

  45. Volkringer C, Meddouri M, Loiseau T, Guillou N, Marrot J, Ferey G, Haouas M, Taulelle F, Audebrand N, Latroche M (2008) Inorg Chem 47:11892–11901

    Article  CAS  PubMed  Google Scholar 

  46. Wu L, Wang W, Liu R, Gn Wu, Chen HR, Soc (2018) Open Sci. 5:181378

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Omar M. Yaghi (University of California, Berkeley) for his continued support. We acknowledge the Saudi Aramco-sponsored Chair Program on Carbon Capture and Utilization (Grant ORCP2390) for supporting this research. The authors would also like to thank and acknowledge the support provided by the Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC–HES), at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project No# INHE2103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aasif Helal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4813 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helal, A., Zahir, M.H., Albadrani, A. et al. Triazole Appended Metal–Organic Framework for CO2 Fixation as Cyclic Carbonates Under Solvent-Free Ambient Conditions. Catal Lett 153, 2883–2891 (2023). https://doi.org/10.1007/s10562-022-04213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04213-x

Keywords

Navigation