Skip to main content
Log in

CO2 cycloaddition reaction at ambient temperature and pressure over metal organic framework catalysts

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Valorisation of CO2 via cycloaddition reactions to value added cyclic carbonates is a desirable, however, challenging technique owing to the chemical and thermodynamic stability of CO2. Here, we report synthesis of Cr-based MIL-101 MOF and postsynthetic incorporation of Brønsted acid groups as active site for catalytic production of cyclic carbonate from CO2 and epoxide. For CO2 cycloaddition reaction with propylene oxide to yield cyclic carbonate, MIL-101(Cr)-N(CH2PO3H2)2 outperformed the pristine MIL-101(Cr)–NH2, while MIL-101(Cr)-NH(CH2)3-SO3H deteriorated the catalytic activity. The catalytic efficacy was found to be depending on active sites, surface areas and pore sizes of the synthesized MOFs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the authors.

References

  1. Y. Jiang, Z. Wang, P. Xu, J. Sun, Cryst. Growth Des. 21, 3689 (2021)

    Article  CAS  Google Scholar 

  2. Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 6, 5933 (2015)

    Article  Google Scholar 

  3. X.B. Lu, D.J. Darensbourg, Chem. Soc. Rev. 41, 1462 (2012)

    Article  CAS  Google Scholar 

  4. S. Payra, S. Roy, J. Phys. Chem. C 125, 8497 (2021)

    Article  CAS  Google Scholar 

  5. F.D. Bobbink, P.J. Dyson, J. Catal. 343, 52 (2016)

    Article  CAS  Google Scholar 

  6. C.G. Li, L. Xu, P. Wu, H. Wu, M. He, Chem. Commun. 50, 15764 (2014)

    Article  CAS  Google Scholar 

  7. R.R. Kuruppathparambil, T. Jose, R. Babu, G.Y. Hwang, A.C. Kathalikkattil, D.W. Kim, D.W. Park, Appl. Catal. B Environ. 182, 562 (2016)

    Article  CAS  Google Scholar 

  8. W. Dai, P. Mao, Y. Liu, S. Zhang, B. Li, L. Yang, X. Luo, J. Zou, J CO2 Util. 36, 295 (2020)

    Article  CAS  Google Scholar 

  9. M. O’Keeffe, O.M. Yaghi, Chem. Rev. 112, 675 (2012)

    Article  Google Scholar 

  10. S. Payra, S. Challagulla, R.R. Indukuru, C. Chakraborty, K. Tarafder, B. Ghosh, S. Roy, New J. Chem. 42, 19205 (2018)

    Article  CAS  Google Scholar 

  11. S. Payra, S. Challagulla, C. Chakraborty, S. Roy, J. Electroanal. Chem. 853, 113545 (2019)

    Article  CAS  Google Scholar 

  12. D. Liu, G. Li, H. Liu, Appl. Surf. Sci. 428, 218 (2018)

    Article  CAS  Google Scholar 

  13. S. Payra, S. Challagulla, Y. Bobde, C. Chakraborty, B. Ghosh, S. Roy, J. Hazard. Mater. 373, 377 (2019)

    Article  CAS  Google Scholar 

  14. S. Payra, S. Ray, R. Sharma, K. Tarafder, P. Mohanty, S. Roy, Inorg. Chem. 61, 2476 (2022)

    Article  CAS  Google Scholar 

  15. P.C. Meenu, S.P. Datta, S.A. Singh, S. Dinda, C. Chakraborty, S. Roy, Mol. Catal. 510, 111710 (2021)

    Article  CAS  Google Scholar 

  16. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, Science 341, 6149 (2013)

    Article  Google Scholar 

  17. G. Han, Q. Qian, K. Mizrahi Rodriguez, Z.P. Smith, Ind. Eng. Chem. Res. 59, 7888 (2020)

    Article  CAS  Google Scholar 

  18. H.C. Zhou, J.R. Long, O.M. Yaghi, Chem. Rev. 112, 673 (2012)

    Article  CAS  Google Scholar 

  19. M.S. Jang, Y.R. Lee, W.S. Ahn, Bull. Korean Chem. Soc. 36, 363 (2015)

    Article  CAS  Google Scholar 

  20. L.J. Zhou, W. Sun, N.N. Yang, P. Li, T. Gong, W.J. Sun, Q. Sui, E.Q. Gao, Chemsuschem 12, 2202 (2019)

    Article  CAS  Google Scholar 

  21. M. Bahadori, S. Tangestaninejad, M. Bertmer, M. Moghadam, V. Mirkhani, I. Mohammadpoorbaltork, R. Kardanpour, F. Zadehahmadi, A.C.S. Sustain, Chem. Eng. 7, 3962 (2019)

    CAS  Google Scholar 

  22. D. Ma, B. Li, K. Liu, X. Zhang, W. Zou, Y. Yang, G. Li, Z. Shi, S. Feng, J. Mater. Chem. A 3, 23136 (2015)

    Article  CAS  Google Scholar 

  23. D. Shao, J. Shi, J. Zhang, X. Tan, T. Luo, X. Cheng, B. Zhang, B. Han, Chem.: An Asian J. 13, 386 (2018)

    CAS  Google Scholar 

  24. M. Ding, H.L. Jiang, ACS Catal. 8, 3194 (2018)

    Article  CAS  Google Scholar 

  25. S. Challagulla, R. Nagarjuna, R. Ganesan, S. Roy, Nano-Str. & Nano Obj. 12, 147 (2017)

    Article  CAS  Google Scholar 

  26. B. Krishna, S. Payra, S. Roy, J. Colloid Interface Sci. 607, 729 (2022)

    Article  CAS  Google Scholar 

  27. C. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science 309, 2040 (2005)

    Article  Google Scholar 

  28. Y. Luan, M. Yang, Q. Ma, Y. Qi, H. Gao, Z. Wu, G. Wang, J. Mater. Chem. A 4, 7641 (2016)

    Article  CAS  Google Scholar 

  29. Y. Lin, C. Kong, L. Chen, RSC Adv. 2, 6417 (2012)

    Article  CAS  Google Scholar 

  30. S. Babaee, M. Zarei, H. Sepehrmansourie, M.A. Zolfigol, S. Rostamnia, ACS Omega 5, 6240 (2020)

    Article  CAS  Google Scholar 

  31. R.S. Andriamitantsoa, J. Wang, W. Dong, H. Gao, G. Wang, RSC Adv. 6, 35135 (2016)

    Article  CAS  Google Scholar 

  32. N. Devarajan, P. Suresh, New J. Chem. 43, 6806 (2019)

    Article  CAS  Google Scholar 

  33. X. Quan, Z. Sun, H. Meng, Y. Han, J. Wu, J. Xu, Y. Xu, X. Zhang, Dalt. Trans. 48, 5384 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SR thanks SERB (Grant No. CRG/2022/000517) for the financial help.

Funding

Birla Institute of Technology and Science, Pilani.

Author information

Authors and Affiliations

Authors

Contributions

SP: investigation, data curation, validation, Writing-original draft. SR: conceptualization, writing-review & editing.

Corresponding author

Correspondence to Sounak Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payra, S., Roy, S. CO2 cycloaddition reaction at ambient temperature and pressure over metal organic framework catalysts. MRS Communications 13, 1309–1314 (2023). https://doi.org/10.1557/s43579-023-00456-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00456-w

Keywords

Navigation