Skip to main content

Advertisement

Log in

Cationic Surfactant-Based Catalysis on the Oxidation of Glutamic Acid by Bis-(2-pyridinealdoximato)dioxomolydate(IV) Complex

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A spectrophotometric routine was used to study the cationic surfactant-based catalysis on the oxidation of glutamic acid (GTA) by bis-(2-pyridinealdoximato)dioxomolybdate(IV) complex at 302 K and an absorption maxima of 560 nm. It follows an acid independent oxidative pathway that is medium-sensitive. Charge density from the reaction species contributes to the redox acceleration, resulting in an upturned primary salt effect with an enhanced reaction rate. Modifying reaction medium with ethanol led to a rise in the oxidation time as the charge catalysis was unsupported by a drop in the system permittivity. Likewise, the inclusion of cetyltrimethylammonium bromide in the system increased the oxidation rate of the GTA due to the high impact of hydrophobic and ion interaction between the micelle and substrates. First order reaction kinetics was observed in the redox partners’ concentration. A 1:1 (complex:GTA) stoichiometry was obtained with the involvement of aldehyde succinic radical, resulting in succinic acid and a Mo2+ deactivated complex. The occurrence of counterion catalysis is pronounced in the reaction system. The standard enthalpy (24.98 \(\pm\) 0.03 kJ mol−1) and Gibbs energy (79.32 \(\pm\) 0.05 kJ mol−1) suggest that the process is energy demanding. The investigation of surfactant-based catalysis in the reaction system was quantitatively ascertained from the Piszkiewicz model of the complex interaction sequence.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Scheme 2

Similar content being viewed by others

Data Availability

The data available on request from the authors.

Abbreviations

CTAB:

Cetyltrimethylammonium bromide

NBP:

N-bromophthalimide

BAB:

N-bromobenzenesulphonamide

GTA:

Glutamic acid

SC:

Conductivity

TX-100:

Triton X-100

FTIR:

Fourier transform infrared spectrophotometer

BDH:

British drug house

D:

Medium permittivity

µ:

Salt concentration

kobd :

Observed rate constant

k2 :

Second order rate constant

CMC:

Critical micellisation concentration

A/Abs:

Absorbance

T:

Temperature

K:

Equilibrium constant

References

  1. Felizola SJ, Nakamura Y, Satoh Y et al (2014) Mol Cell Endocrinol 382:170–177

    Article  CAS  PubMed  Google Scholar 

  2. Alhaji NMI, Lawrence SSM (2011) E-J Chem 8:1472–1477

    Article  CAS  Google Scholar 

  3. Puttaswamy Vaz N (2001) Proc Indian Acad Sci 113:325–332

    Article  Google Scholar 

  4. Gowda BT, Shetty M (2004) J Phys Org Chem 17:848–864

    Article  CAS  Google Scholar 

  5. Sar P, Saha B (2020) Adv Colloid Interface Sci 284:1–14

    Article  Google Scholar 

  6. Sen PK, Gani N, Midya JK et al (2012) Int J Chem Kinet 44:482–493

    Article  CAS  Google Scholar 

  7. Williams RJP, da Silva JJRF (2002) Biochem Biophys Res Commun 292:293–299

    Article  CAS  PubMed  Google Scholar 

  8. Mendel RR (2005) J Royal Soc Chem Dalton Transit 2005:3404–3409

    Article  Google Scholar 

  9. Konidari KF, Raptopoulou CP, Psycharis V et al (2010) Bioinorg Chem Appl 2010:159656

    Google Scholar 

  10. Onu AD, Iyun JF, Idris SO (2015) Open J Inorg Chem 5:75–82

    Article  CAS  Google Scholar 

  11. Osunkwo CR, Nkole IU, Onu AD et al (2018) Int J Adv Chem 6:121–126

    Article  Google Scholar 

  12. Nkole IU, Abdulsalam S, Ibrahim I et al (2021) Chem Afr 4:525–533

    Article  CAS  Google Scholar 

  13. Jeffery GH, Bassett J, Mendham J et al (1989) Vogel, 5th edn. Wiley, New York, pp 180–500

    Google Scholar 

  14. Sanjana M, Patnaik AK, Badamali SK et al (2012) J Chem 2013:1–7

    Article  Google Scholar 

  15. Jayapriya G, Shoba FG (2014) Asian J Plant Sci Res 4:20–24

    Google Scholar 

  16. Arthur DE, Nkole IU, Osunkwo CR (2020) Chem Afr 4:63–69

    Article  Google Scholar 

  17. Nkole IU, Osunkwo CR, Onu AD et al (2018) Int J Adv Chem 6:102–107

    Article  Google Scholar 

  18. Osunkwo CR, Nkole IU, Onu AD et al (2018) Nig Res J Chem Sci 5:82–97

    Google Scholar 

  19. Abdulsalam S, Idirs SO, Shallangwa GA et al (2020) Heliyon 6:e04621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ibrahim I, Idris SO, Abdulkadir I et al (2019) Transit Met Chem 44:269–273

    Article  CAS  Google Scholar 

  21. Dennis CR, Van Zyl GJ, Fourie E et al (2021) Reac Kinet Mech Catal 132:599–615

    Article  CAS  Google Scholar 

  22. Ogunlusi GO, Oyetunji OA, Owoyomi O et al (2016) J Dispers Sci Technol 38:1129–1134

    Article  Google Scholar 

  23. Nkole IU, Idris SO (2021) Chem Afr 4:731–740

    Article  CAS  Google Scholar 

  24. Nkole IU, Idris SO, Onu AD (2021) Inorg Chem Commun 133:108930

    Article  CAS  Google Scholar 

  25. Chakraborty M, Mandal PC, Mukhopadhyay S (2013) Inorg Chimica Acta 398:77–82

    Article  CAS  Google Scholar 

  26. Shanmugaprabha T, Selvakumar K, Rajasekaran K et al (2016) Transit Metal Chem 41:177–185

    Article  Google Scholar 

  27. Alam MS, Ragupathy R, Mandal AB (2016) J Dispers Sci Technol 37:1–22

    Article  Google Scholar 

  28. Laguta AN, Eltsov SV, Mchedlov-Petrossyan NO (2018) Int J Chem Kinet 51:83–94

    Article  Google Scholar 

  29. Laguta AN, Eltsov SV, Mchedlov-Petrossyan NO (2019) J Mol Liq 277:70–77

    Article  CAS  Google Scholar 

  30. Jiang B, Du J, Cheng S et al (2003) J Dispers Sci Technol 24:755–760

    Article  CAS  Google Scholar 

  31. Jalali F, Gerandaneh A (2011) J Dispers Sci Technol 32:659–666

    Article  CAS  Google Scholar 

  32. Sood AK, Sharma S (2016) Phys Chem Liq 2016:1–15

    Google Scholar 

  33. Baloch M, Hameed G, Bano A (2002) J Chem Soc Pakistan 24:77–86

    CAS  Google Scholar 

Download references

Acknowledgements

Department of Chemistry, Ahmadu Bello University Zaria

Funding

The research did not receive grant from any organization or institution.

Author information

Authors and Affiliations

Authors

Contributions

IUN, SOI, and IA: conceived and design the study. ADO, IUN, and SOI: collected and analyzed the data. IUN, SOI, IA, and ADO: drafted the manuscript, revised the manuscript critically for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to I. U. Nkole.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 169 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nkole, I.U., Idris, S.O., Abdulkadir, I. et al. Cationic Surfactant-Based Catalysis on the Oxidation of Glutamic Acid by Bis-(2-pyridinealdoximato)dioxomolydate(IV) Complex. Catal Lett 153, 3581–3590 (2023). https://doi.org/10.1007/s10562-022-04187-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04187-w

Keywords

Navigation