Skip to main content
Log in

Biosynthesize of Zinc Oxide Nanoparticles and Their Promoter Actions in the Application of Pd/ZnO Catalyst for Electro-Oxidation of Ethanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A rapid, green, and easy strategy for the biosynthesis of zinc oxide nanoparticles (ZnO-NPs) was described using Ducrosia anethifolia and Anabasis setifera plant extracts. The structures of biosynthesized ZnO-NPs were characterized by FT-IR, XRD, EDX, and FESEM techniques. Synthesized ZnO-NPs based on two recourses, also have been employed as the support and promoter in the synthesis of Pd/ZnO nanoparticles. The XRD, FESEM, EDX, and elemental mapping analyses are used to determine the phase and morphology of as-synthesized oxides. The electrochemical studies with cyclic voltammetry showed that the oxide synthesized by Ducrosia anethifolia plant extract had better promoting behavior than one Anabasis setifera for palladium in the oxidation of ethanol. It is due to the more porous structure of oxide synthesized by Ducrosia anethifolia plant extract than Anabasis setifera; which resulted in a higher surface area and greater dispersion of palladium on the promoter.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Naseem T, Durrani T (2021) The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: a review. Environ Chem Ecotox 3:59–75. https://doi.org/10.1016/j.enceco.2020.12.001

    Article  CAS  Google Scholar 

  2. Pandit C, Roy A, Ghotekar S et al (2022) Biological agents for synthesis of nanoparticles and their applications. J King Saud Univ Sci 34:101869–101881. https://doi.org/10.1016/j.jksus.2022.101869

    Article  Google Scholar 

  3. Alavi M, Varma RS (2021) Phytosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: recent advances. Sustain Chem Pharm 21:100412–100423. https://doi.org/10.1016/j.scp.2021.100412

    Article  CAS  Google Scholar 

  4. Meierhofer F, Fritsching U (2021) Synthesis of metal oxide nanoparticles in flame sprays: review on process technology, modeling, and diagnostics. Energy Fuels 35:5495–5537. https://doi.org/10.1021/acs.energyfuels.0c04054

    Article  CAS  Google Scholar 

  5. Ge S, Shi X, Sun K et al (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Physic ChemC 113:13593–13599. https://doi.org/10.1021/jp902953t

    Article  CAS  Google Scholar 

  6. Nikam AV, Prasad BLV, Kulkarni AA (2018) Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm 20:5091–5107. https://doi.org/10.1039/C8CE00487K

    Article  CAS  Google Scholar 

  7. Huang Y, Haw CY, Zheng Z et al (2021) Biosynthesis of zinc oxide nanomaterials from plant extracts and future green prospects: a topical review. Adv Sustain Sys 5:2000266–2000287. https://doi.org/10.1002/adsu.202000266

    Article  CAS  Google Scholar 

  8. Cuong HN, Pansambal S, Ghotekar S et al (2022) New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: a review. Environ Res 203:111858–111881. https://doi.org/10.1016/j.envres.2021.111858

    Article  CAS  PubMed  Google Scholar 

  9. Priyadarshini S, Mainal A, Sonsudin F et al (2020) Biosynthesis of TiO2 nanoparticles and their superior antibacterial effect against human nosocomial bacterial pathogens. Res Chem Intermed 46:1077–1089. https://doi.org/10.1007/s11164-019-03857-6

    Article  CAS  Google Scholar 

  10. Karande SD, Jadhav SA, Garud HB et al (2021) Green and sustainable synthesis of silica nanoparticles. Nanotech Environ Engin 6:29–42. https://doi.org/10.1007/s41204-021-00124-1

    Article  CAS  Google Scholar 

  11. Das B, Moumita S, Ghosh S et al (2018) Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus. Mater Sci Engin: C 91:436–444. https://doi.org/10.1016/j.msec.2018.05.059

    Article  CAS  Google Scholar 

  12. Sogne V, Meier F, Klein T et al (2017) Investigation of zinc oxide particles in cosmetic products by means of centrifugal and asymmetrical flow field-flow fractionation. J Chromatogr A 1515:196–208. https://doi.org/10.1016/j.chroma.2017.07.098

    Article  CAS  PubMed  Google Scholar 

  13. El-Gharbawy RM, Emara AM, Abu-Risha E-S, S, (2016) Zinc oxide nanoparticles and a standard antidiabetic drug restore the function and structure of beta cells in Type-2 diabetes. Biomed Pharmacother 84:810–820. https://doi.org/10.1016/j.biopha.2016.09.068

    Article  CAS  PubMed  Google Scholar 

  14. Lee SW, Said NS, Sarbon NM (2021) The effects of zinc oxide nanoparticles on the physical, mechanical and antimicrobial properties of chicken skin gelatin/tapioca starch composite films in food packaging. J Food Sci Technol 58:4294–4302. https://doi.org/10.1007/s13197-020-04904-6

    Article  CAS  PubMed  Google Scholar 

  15. Javaid S, Lee J, Sofianos MV et al (2021) Zinc oxide nanoparticles as antifouling materials for the electrochemical detection of methylparaben. ChemElectroChem 8:187–194. https://doi.org/10.1002/celc.202001487

    Article  CAS  Google Scholar 

  16. Kahsay MH (2021) Synthesis and characterization of ZnO nanoparticles using aqueous extract of Becium grandiflorum for antimicrobial activity and adsorption of methylene blue. Appl Water Sci 11:45–56. https://doi.org/10.1007/s13201-021-01373-w

    Article  CAS  Google Scholar 

  17. Donga S, Chanda S (2022) Caesalpinia crista seeds mediated green synthesis of zinc oxide nanoparticles for antibacterial, antioxidant, and anticancer activities. BioNanoScience 12:451–462. https://doi.org/10.1007/s12668-022-00952-8

    Article  Google Scholar 

  18. Khaleghi S, Khayatzadeh J, Neamati A (2022) Biosynthesis of zinc oxide nanoparticles using Origanum majorana L. leaf extract, its antioxidant and cytotoxic activities. Mater Techno. https://doi.org/10.1080/10667857.2022.2044218

    Article  Google Scholar 

  19. Rafique M, Tahir R, Gillani SSA et al (2022) Plant-mediated green synthesis of zinc oxide nanoparticles from Syzygium Cumini for seed germination and wastewater purification. Int J Environ Anal Chem 102:23–38. https://doi.org/10.1080/03067319.2020.1715379

    Article  CAS  Google Scholar 

  20. Rambabu K, Bharath G, Banat F et al (2021) Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J Hazard Mater 402:123560–123571. https://doi.org/10.1016/j.jhazmat.2020.123560

    Article  CAS  PubMed  Google Scholar 

  21. Sharma P, Urfan M, Anand R et al (2022) Green synthesis of zinc oxide nanoparticles using Eucalyptus lanceolata leaf litter: characterization, antimicrobial and agricultural efficacy in maize. Physiol Mol Biol Plants 28:363–381. https://doi.org/10.1007/s12298-022-01136-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thakur S, Shandilya M, Guleria G (2021) Appraisement of antimicrobial zinc oxide nanoparticles through Cannabis Jatropha curcasa Alovera and Tinosporacordifolia leaves by green synthesis process. J Environ Chem Engin 9:104882–104892. https://doi.org/10.1016/j.jece.2020.104882

    Article  CAS  Google Scholar 

  23. Arbabi M, Badi HN, Labbafi M et al (2018) Morphophysiological and phytochemical variability in some wild populations of Ducrosia anethifolia from Iran. Chem Biodivers 15:e1800301. https://doi.org/10.1002/cbdv.201800301

    Article  CAS  PubMed  Google Scholar 

  24. Elsharkawy ER, Abdallah EM, Shiboob MH et al (2019) Phytochemical, antioxidant and antibacterial potential of Ducrosia anethifolia in northern border region of Saudi Arabia. J Pharm Res Inter 31:1–8. https://doi.org/10.9734/jpri/2019/v31i630361

    Article  CAS  Google Scholar 

  25. Mottaghipisheh J, Nové M, Spengler G et al (2018) Antiproliferative and cytotoxic activities of furocoumarins of Ducrosia anethifolia. Pharm Biol 56:658–664. https://doi.org/10.1080/13880209.2018.1548625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shalaby NMM, Abd-Alla HI, Aly HF et al (2014) Preliminary in vitro and in vivo evaluation of antidiabetic activity of Ducrosia anethifolia Boiss. and its linear furanocoumarins. BioMed Res Inter 2014:480545–480558. https://doi.org/10.1155/2014/480545

    Article  Google Scholar 

  27. Abolghasemi R, Haghighi M, Solgi M (2022) Biosynthesis of zinc sulphide nanoparticles using the residual of Ducrosia anethifolia. Inter J Envi Waste Manag 29:196–207. https://doi.org/10.1504/IJEWM.2022.121216

    Article  CAS  Google Scholar 

  28. Kouhbanani MAJ, Beheshtkhoo N, Nasirmoghadas P et al (2019) Green synthesis of spherical silver nanoparticles using Ducrosia anethifolia aqueous extract and its antibacterial activity. J Envir Treat Tech 7:461–466

    Google Scholar 

  29. Rigi F (2022) Extracted saponin from Anabasis setifera plant as a biosurfactant for stabilization of oil in water (O/W) nano-emulsion based on date palm (Phoenix dactylifera) kernel oil. Tens Surfac Deter 59:344–352. https://doi.org/10.1515/tsd-2021-2420

    Article  CAS  Google Scholar 

  30. Abdou AM, Abdallah HM, Mohamed MA et al (2013) A new anti-inflammatory triterpene saponin isolated from Anabasis setifera. Arch Pharm Res 36:715–722. https://doi.org/10.1007/s12272-013-0075-9

    Article  CAS  PubMed  Google Scholar 

  31. Choudhary AK, Pramanik H (2019) Synthesis of low-cost HNO3-functionalized acetylene black carbon supported Pt-Ru/CAB nano electrocatalysts for the application in direct ethanol fuel cell (DEFC). Korean J Chem Eng 36:1688–1707. https://doi.org/10.1007/s11814-019-0343-6

    Article  CAS  Google Scholar 

  32. Hu C, Park JH, Kim HM et al (2022) Robust and durable poly(aryl-co-aryl piperidinium) reinforced mebranes for alkaline membrane fuel cells. J Mater Chem A 10:6587–6595. https://doi.org/10.1039/D2TA00196A

    Article  CAS  Google Scholar 

  33. Lo A-Y, Chung Y-C, Hung W-H et al (2017) Pt20RuxSny nanoparticles dispersed on mesoporous carbon CMK-3 and their application in the oxidation of 2-carbon alcohols and fermentation effluent. Electrochim Acta 225:207–214. https://doi.org/10.1016/j.electacta.2016.12.098

    Article  CAS  Google Scholar 

  34. Vigier F, Coutanceau C, Hahn F et al (2004) On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J Electroanal Chem 563:81–89. https://doi.org/10.1016/j.jelechem.2003.08.019

    Article  CAS  Google Scholar 

  35. Lee YW, Kim M, Kim Y et al (2010) Synthesis and electrocatalytic activity of Au−Pd Alloy nanodendrites for ethanol oxidation. J Physic Chem C 114:7689–7693. https://doi.org/10.1021/jp9119588

    Article  CAS  Google Scholar 

  36. Yavari Z, Noroozifar M, Khorasani-Motlagh M (2015) Multifunctional catalysts toward methanol oxidation in direct methanol fuel cell. J Appl Electrochem 45:439–451. https://doi.org/10.1007/s10800-015-0806-3

    Article  CAS  Google Scholar 

  37. Mazloum-Ardakani M, Eslami V, Khoshroo A (2018) Nickel nitride nanoparticles as efficient electrocatalyst for effective electro-oxidation of ethanol and methanol in alkaline media. Mater Sci Eng B 229:201–205. https://doi.org/10.1016/j.mseb.2017.12.038

    Article  CAS  Google Scholar 

  38. Kaedi F, Yavari Z, Noroozifar M et al (2018) Promoted electrocatalytic ability of the Pd on doped Pt in NiO-MgO solid solution toward methanol and ethanol oxidation. J Electroanal Chem 827:204–212. https://doi.org/10.1016/j.jelechem.2018.09.025

    Article  CAS  Google Scholar 

  39. Zareie Yazdan-Abad M, Noroozifar M, Modaresi Alam AR et al (2017) Palladium aerogel as a high-performance electrocatalyst for ethanol electro-oxidation in alkaline media. J Mater Chem A 5:10244–10249. https://doi.org/10.1039/C7TA03208K

    Article  CAS  Google Scholar 

  40. Duan J-J, Feng J-J, Zhang L et al (2019) Facile one-pot aqueous fabrication of interconnected ultrathin PtPbPd nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reactions. Int J Hydrog Energy 44:27455–27464. https://doi.org/10.1016/j.ijhydene.2019.08.225

    Article  CAS  Google Scholar 

  41. Feng Y-G, Niu H-J, Mei L-P et al (2020) Engineering 3D hierarchical thorn-like PtPdNiCu alloyed nanotripods with enhanced performances for methanol and ethanol electrooxidation. J Coll Interf Sci 575:425–432. https://doi.org/10.1016/j.jcis.2020.04.120

    Article  CAS  Google Scholar 

  42. Zhang R-L, Duan J-J, Han Z et al (2020) One-step aqueous synthesis of hierarchically multi-branched PdRuCu nanoassemblies with highly boosted catalytic activity for ethanol and ethylene glycol oxidation reactions. Appl Surf Sci 506:144791–144794. https://doi.org/10.1016/j.apsusc.2019.144791

    Article  CAS  Google Scholar 

  43. Yavari Z, Afarani MS, Arabi AM et al (2020) Electrooxidation of single-carbon molecules by nanostructured Pd-decorated spongy ceria. Korean J Chem Eng 37:1669–1679. https://doi.org/10.1007/s11814-020-0571-9

    Article  CAS  Google Scholar 

  44. Zhang K, Yang W, Ma C et al (2015) A highly active, stable and synergistic Pt nanoparticles/Mo2C nanotube catalyst for methanol electro-oxidation. NPG Asia Mater 7:153–163. https://doi.org/10.1038/am.2014.122

    Article  CAS  Google Scholar 

  45. Barakat NAM, Abdelkareem MA, El-Newehy M et al (2013) Influence of the nanofibrous morphology on the catalytic activity of NiO nanostructures: an effective impact toward methanol electrooxidation. Nano Res Lett 8:402–407. https://doi.org/10.1186/1556-276X-8-402

    Article  CAS  Google Scholar 

  46. Xu C, Cheng L, Shen P et al (2007) Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem Commun 9:997–1001. https://doi.org/10.1016/j.elecom.2006.12.003

    Article  CAS  Google Scholar 

  47. Noroozifar M, Yavari Z, Khorasani-Motlagh M et al (2016) Fabrication and performance evaluation of a novel membrane electrode assembly for DMFCs. RSC Adv 6:563–574. https://doi.org/10.1039/C5RA21389D

    Article  CAS  Google Scholar 

  48. Saha MS, Li R, Sun X (2008) High loading and monodispersed Pt nanoparticles on multiwalled carbon nanotubes for high performance proton exchange membrane fuel cells. J Power Sources 177:314–322. https://doi.org/10.1016/j.jpowsour.2007.11.036

    Article  CAS  Google Scholar 

  49. Yavari Z, Meshginkhoud A, Molaee Barjahri R et al (2021) CH3OH electrooxidation by nanosized Pd loaded on porous LaMnO3. Mater Today Chem 19:100398–100406. https://doi.org/10.1016/j.mtchem.2020.100398

    Article  CAS  Google Scholar 

  50. Alvarez GF, Mamlouk M, Senthil Kumar SM et al (2011) Preparation and characterisation of carbon-supported palladium nanoparticles for oxygen reduction in low temperature PEM fuel cells. J Appl Electrochem 41:925–937. https://doi.org/10.1007/s10800-011-0318-8

    Article  CAS  Google Scholar 

  51. Li L, Xing Y (2009) Methanol electro-oxidation on Pt-Ru alloy nanoparticles supported on carbon nanotubes. Energies 2:789–804. https://doi.org/10.3390/en20300789

    Article  CAS  Google Scholar 

  52. Toma FM, Sartorel A, Iurlo M et al (2010) Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nat Chem 2:826–831. https://doi.org/10.1038/nchem.761

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Higher Education Complex of Saravan and the University of Sistan and Baluchestan for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Rigi.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigi, F., Yavari, Z. Biosynthesize of Zinc Oxide Nanoparticles and Their Promoter Actions in the Application of Pd/ZnO Catalyst for Electro-Oxidation of Ethanol. Catal Lett 153, 3817–3828 (2023). https://doi.org/10.1007/s10562-022-04159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04159-0

Keywords

Navigation