Skip to main content
Log in

Low Temperature CO Oxidation in Sintering Flue Gas Over Cu-Ce/AC Catalysts: Effect of Pretreatment with KMnO4 on Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Several CuCe-xKMn/AC catalysts were synthesized by using activated carbon (AC) pretreated with KMnO4 as support to remove CO in simulated sintering flue gas. Multiple techniques such as X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), temperature-programmed reduction by H2 (H2-TPR), scanning electron microscopy (SEM), Fourier transform infrared spectroscope (FTIR) and Raman spectra were employed for catalyst characterization. The results indicated that the CuCe–10KMn/AC catalyst exhibited above 98.5% CO conversion at 160 °C with a flow rate of 100 ml/min. AC pretreated with KMnO4 could create more defects, which played the role of anchoring the active particles and prevented the accumulation of active particles effectively. A few Mnx+ and Cux+ entered into ceria lattice and substituted Ce4+ partly to form the Cu–Ce–Mn–O solid solution, which promoted the production of oxygen vacancies and improved the oxygen mobility. Additionally, the graphitization degree of AC increased, which was conducive to electron transfer between support and active components.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 3

Similar content being viewed by others

References

  1. Tang X, Wang J, Ma Y et al (2021) Low-temperature and stable CO oxidation of Co3O4/TiO2 monolithic catalysts. Chin Chem Lett 32:48–52

    Article  CAS  Google Scholar 

  2. Waqas M, Mountapmbeme Kouotou P, El Kasmi A et al (2020) Role of copper grid mesh in the catalytic oxidation of CO over one-step synthesized Cu-Fe-Co ternary oxides thin film. Chin Chem Lett 31:1201–1206

    Article  CAS  Google Scholar 

  3. Xu Z, Yin Q, Li X et al (2020) Self-assembly of a highly stable and active Co3O4/H-TiO2 bulk heterojunction with high-energy interfacial structures for low temperature CO catalytic oxidation. Catal Sci Technol 10:8374–8382

    Article  CAS  Google Scholar 

  4. Li N, Chen QY, Luo LF et al (2013) Kinetic study and the effect of particle size on low temperature CO oxidation over Pt/TiO2 catalysts. Appl Catal, B 142:523–532

    Article  Google Scholar 

  5. Wang F, Zhao K, Zhang H et al (2014) Low temperature CO catalytic oxidation over supported Pd-Cu catalysts calcined at different temperatures. Chem Eng J 242:10–18

    Article  CAS  Google Scholar 

  6. Li S, Zhu H, Qin Z et al (2014) Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation. Appl Catal, B 144:498–506

    Article  CAS  Google Scholar 

  7. Luo Z, Mao D, Shen W et al (2017) Preparation and characterization of mesostructured cellular foam silica supported Cu-Ce mixed oxide catalysts for CO oxidation. RSC Adv 7:9732–9743

    Article  CAS  Google Scholar 

  8. Gu D, Jia CJ, Bongard H et al (2014) Ordered mesoporous Cu-Ce-O catalysts for CO preferential oxidation in H2-rich gases: influence of copper content and pretreatment. Appl Catal, B 152:11–18

    Article  Google Scholar 

  9. Alketbi M, Polychronopoulou K, Jaoude MA et al (2020) Cu-Ce-La-O-x as efficient CO oxidation catalysts: effect of Cu content. Appl Surf Sci 505:144474. https://doi.org/10.1016/j.apsusc.2019.144474

    Article  CAS  Google Scholar 

  10. Hossain ST, Azeeva E, Zhang K et al (2018) A comparative study of CO oxidation over Cu-O-Ce solid solutions and CuO/CeO2 nanorods catalysts. Appl Surf Sci 455:132–143

    Article  CAS  Google Scholar 

  11. Guo X, Ye W, Ma T (2020) Investigation of the re-dispersion of matrix Cu species in Cu(x)Ce(1–x)O(2) nanorod catalysts and its effect on the catalytic performance in CO-PROX. Catal Sci Technol 10:4766–4775

    Article  CAS  Google Scholar 

  12. Wang L, Peng H, Shi SL et al (2022) Metal-organic framework derived hollow CuO/CeO2 nano-sphere: to expose more highly dispersed Cu-O-Ce interface for enhancing preferential CO oxidation. Appl Surf Sci 573:151611. https://doi.org/10.1016/j.apsusc.2021.151611

    Article  CAS  Google Scholar 

  13. Guo Y, Wang G, Yao X et al (2020) A comparison of NiO-CuO-CeO2 composite catalysts prepared via different methods for CO oxidation. J Solid State Chem 292:121697. https://doi.org/10.1016/j.jssc.2020.121697

    Article  CAS  Google Scholar 

  14. Ge C, Liu L, Liu Z et al (2014) Improving the dispersion of CeO2 on γ-Al2O3 to enhance the catalytic performances of CuO/CeO2/γ-Al2O3 catalysts for NO removal by CO. Catal Commun 51:95–99

    Article  CAS  Google Scholar 

  15. Zamaro JM, Pérez NC, Miró EE et al (2012) HKUST-1 MOF: a matrix to synthesize CuO and CuO-CeO2 nanoparticle catalysts for CO oxidation. Chem Eng J 195–196:180–187

    Article  Google Scholar 

  16. Zhao Y, Dong F, Han W et al (2018) Construction of Cu-Ce/graphene catalysts via a one-step hydrothermal method and their excellent CO catalytic oxidation performance. RSC Adv 8:1583–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moretti E, Molina AI, Sponchia G et al (2017) Low-temperature carbon monoxide oxidation over zirconia-supported CuO-CeO2 catalysts: effect of zirconia support properties. Appl Surf Sci 403:612–622

    Article  CAS  Google Scholar 

  18. Zaman SF, Pasupulety N, Al-Zahrani AA et al (2017) Ammonia treated Mo/AC catalysts for CO hydrogenation with improved oxygenates selectivity. J Chem Sci 129:589–599

    Article  CAS  Google Scholar 

  19. Xu Z, Li Y, Lin Y et al (2021) Loading mechanism and double-site reaction mechanism of Cu on activated carbon for enhanced oxidation of CO from flue gas. Chem Eng J 419:129994. https://doi.org/10.1016/j.cej.2021.129994

    Article  CAS  Google Scholar 

  20. Chuang KH, Shih K, Lu CY et al (2012) Copper catalysts prepared via microwave-heated polyol process for preferential oxidation of CO in H2-rich streams. Int J Hydrog Energy 38:100–108

    Article  Google Scholar 

  21. Tavakoli Foroushani F, Tavanai H, Hosseini FA (2016) An investigation on the effect of KMnO4 on the pore characteristics of pistachio nut shell based activated carbon. Microporous Mesoporous Mater 230:39–48

    Article  CAS  Google Scholar 

  22. Sun S, Zhao X, Lu H et al (2013) Unusual properties of nanostructured Ce1-xCoxO2-y, Ce1-xNixO2-y and Ce1-(x+y)CoxNiyO2-z: structural studies and catalytic activity. CrystEngComm 15:1370–1376

    Article  CAS  Google Scholar 

  23. Guo X, Li J, Zhou R (2016) Catalytic performance of manganese doped CuO-CeO2 catalysts for selective oxidation of CO in hydrogen-rich gas. Fuel 163:56–64

    Article  CAS  Google Scholar 

  24. Guichard B, Roy-Auberger M, Devers E et al (2009) Characterization of aged hydrotreating catalysts. Part I: coke depositions, study on the chemical nature and environment. Appl Catal, A 367:1–8

    Article  CAS  Google Scholar 

  25. Zeng X, Xiao X, Li Y et al (2017) Deep desulfurization of liquid fuels with molecular oxygen through graphene photocatalytic oxidation. Appl Catal, B 209:98–109

    Article  CAS  Google Scholar 

  26. Xing X, Du Y, Zheng J et al (2021) Isothermal carbothermal reduction of FeTiO3 doped with MgO. Jom 73:1328–1336

    Article  CAS  Google Scholar 

  27. Li J, Naga K, Ohzawa Y et al (2005) Effect of surface fluorination on the electrochemical behavior of petroleum cokes for lithium ion battery. J Flouorine Chem 126:265–273

    Article  CAS  Google Scholar 

  28. Tian Z, Wang C, Si Z et al (2017) Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method. Appl Catal, A 541:50–59

    Article  CAS  Google Scholar 

  29. Tan MH, Wang D, Ai PP et al (2016) Enhancing catalytic perforrnance of activated carbon supported Rh catalyst on heterogeneous hydroformylation of 1-hexene via introducing surface oxygen-containing groups. Appl Catal, A 527:53–59

    Article  CAS  Google Scholar 

  30. Zhang J, Xin B, Shan C et al (2021) Roles of oxygen-containing functional groups of O-doped g-C3N4 in catalytic ozonation: quantitative relationship and first-principles investigation. Appl Catal, B 292:120155. https://doi.org/10.1016/j.apcatb.2021.120155

    Article  CAS  Google Scholar 

  31. Pan Z, Wang K, Wang Y et al (2018) In-situ electrosynthesis of hydrogen peroxide and wastewater treatment application: a novel strategy for graphite felt activation. Appl Catal, B 237:392–400

    Article  CAS  Google Scholar 

  32. Zheng J, Xing X, Pang Z et al (2021) Effect of Na2CO3, HF, and CO2 treatment on the regeneration of exhausted activated carbon used in sintering flue gas. ACS Omega 6:25762–25771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang H, Zhang G, Fan G et al (2019) Unravelling the nature of the active species as well as the doping effect over Cu/Ce based catalyst for carbon monoxide preferential oxidation. ACS Catal 9:2177–2195

    Article  Google Scholar 

  34. Trogadas P, Parrondo J, Ramani V (2012) CeO2 surface oxygen vacancy concentration governs in situ free radical scavenging efficacy in polymer electrolytes. ACS Appl Mater Interfaces 4:5098–5102

    Article  CAS  PubMed  Google Scholar 

  35. Shen Z, Xing X, Wang S et al (2022) Effect of K-modified blue coke-based activated carbon on low temperature catalytic performance of supported Mn-Ce/activated carbon. ACS Omega 7:8798–8807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li W, Shen X, Zeng R et al (2019) Constructing copper-ceria nanosheets with high concentration of interfacial active sites for enhanced performance in CO oxidation. Appl Surf Sci 492:818–825

    Article  CAS  Google Scholar 

  37. Moretti E, Storaro L, Talon AP et al (2015) 3-D flower like Ce–Zr–Cu mixed oxide systems in the CO preferential oxidation (CO-PROX): effect of catalyst composition. Appl Catal, B 168–169:385–395

    Article  Google Scholar 

  38. Miranda Cruz AR, Assaf EM, Gomes JF et al (2021) Active copper species of co-precipitated copper-ceria catalysts in the CO-PROX reaction: an in situ XANES and DRIFTS study. Catal Today 381:42–49

    Article  CAS  Google Scholar 

  39. Li J, Zhu P, Zhou R et al (2011) Effect of the preparation method on the performance of CuO–MnOx–CeO2 catalysts for selective oxidation of CO in H2-rich streams. J Power Sources 196:9590–9598

    Article  CAS  Google Scholar 

  40. Li J, Zhu P, Zuo S et al (2010) Influence of Mn doping on the performance of CuO-CeO2 catalysts for selective oxidation of CO in hydrogen-rich streams. Appl Catal, A 381:261–266

    Article  CAS  Google Scholar 

  41. Zou ZQ, Meng M, Zha YQ (2009) Surfactant-assisted synthesis, characterizations, and catalytic oxidation mechanisms of the mesoporous MnOx−CeO2 and Pd/MnOx−CeO2 catalysts used for CO and C3H8 oxidation. J Phys Chem C 114:468–477

    Article  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by the Natural Science Basic foundation of China (Program No. 52174325), the Key Research and Development Program of Shaanxi (Grant No. 2020GY-166 and Program No. 2020GY-247). We thank Miss Qiantao Zhang at Instrument Analysis Center of Xi’an University of Architecture and Technology for their assistance with Raman analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangdong Xing or Ming Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Xing, X., Pang, Z. et al. Low Temperature CO Oxidation in Sintering Flue Gas Over Cu-Ce/AC Catalysts: Effect of Pretreatment with KMnO4 on Activity. Catal Lett 153, 1726–1737 (2023). https://doi.org/10.1007/s10562-022-04100-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04100-5

Keywords

Navigation