Skip to main content
Log in

Preparation of a Novel Composite Material Aluminum-Based MOF(DUT-5)/Bi2MoO6 for Degradation of Tetracycline

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, a novel composite DUT-5/Bi2MoO6 (DUT-5/BMO) photocatalytic material was prepared by two-step hydrothermal method for the first time. The materials were characterized by SEM, XPS, etc. Studies have shown that material with a new n–n heterojunction structure can quickly degrade tetracycline. DUT-5 was embedded between the Bi2MoO6 nanosheets, which promotes the photogenerated electrons from DUT-5 flows to Bi2MoO6, thereby reducing the recombination rate of photo-generated electron–hole pairs. The BET results show that the composite material has a larger specific surface area than the monomer Bi2MoO6. It can provide more active sites. After 60 min of visible light irradiation, the photocatalytic degradation efficiency of TC with 15% DUT-5/BMO reached 84.22%, which is 5.37 and 2.12 times higher than that of pure DUT-5 and Bi2MoO6, ·O2 and h+ were the main active substances in the photocatalysis process. In addition, DUT-5/BMO composites show excellent stability and recyclability in 5 times cyclic experiments. In conclusion, DUT-5/BMO has good stability in the environment, and can be used for environmental remediation without pollution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hu FP, Luo WD, Liu CH, Dai HL, Xu X, Yue QY, Xu L, Xu GP, Jian Y, Peng XM (2021) Fabrication of graphitic carbon nitride functionalized P–CoFe2O4 for the removal of tetracycline under visible light: optimization, degradation pathways and mechanism evaluation. Chemosphere 274:129783. https://doi.org/10.1016/j.chemosphere.2021.129783

    Article  CAS  PubMed  Google Scholar 

  2. Chen F, Yang Q, Li XM, Zeng GM, Wang DB, Niu CG, Zhao JW, An HX, Xie T, Deng YC (2017) Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4(040)Z-scheme photocatalyst: an efficient, sustainable and heterogeneouscatalyst with enhanced visible-light photoactivity towardstetracycline degradation under visible light irradiation. Appl Catal B 200:330–342. https://doi.org/10.1016/j.apcatb.2016.07.021

    Article  CAS  Google Scholar 

  3. Yang RX, Zhong S, Zhang LS, Liu BJ (2020) PW12/CN@Bi2WO6 composite photocatalyst prepared based on organicinorganic hybrid system for removing pollutants in water. Sep Purif Technol 235:116270. https://doi.org/10.1016/j.seppur.2019.116270

    Article  CAS  Google Scholar 

  4. Habibi-Yangjeh A, Asadzadeh-Khaneghah S, Feizpoor S, Rouhi A (2020) Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses? J Colloid Interface Sci 580:503–514. https://doi.org/10.1016/j.jcis.2020.07.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Asadzadeh-Khaneghah S, Habibi-Yangjeh A (2020) g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: a review. J Clean Prod 276:124319. https://doi.org/10.1016/j.jclepro.2020.124319

    Article  CAS  Google Scholar 

  6. Akhundi A, Badiei A, Ziarani GM, Habibi-Yangjeh A, Muñoz-Batista MJ, Luque R (2020) Graphitic carbon nitride-based photocatalysts: toward efficient organic transformation for value-added chemicals production. Mol Catal 488:110902. https://doi.org/10.1016/j.mcat.2020.110902

    Article  CAS  Google Scholar 

  7. Akhundi A, Habibi-Yangjeh A, Abitorabi M, Pouran SR (2019) Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catal Rev 61(4):595–628. https://doi.org/10.1080/01614940.2019.1654224

    Article  CAS  Google Scholar 

  8. Babaei AA, Golshan M, Kakavandi B (2021) A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@carbon. Process Saf Environ Prot 149:35–47. https://doi.org/10.1016/j.psep.2020.10.028

    Article  CAS  Google Scholar 

  9. Moradi S, Sobhgol SA, Hayati F, Isari AA, Kakavandi B, Bashardoust P, Anvaripour B (2020) Performance and reaction mechanism of MgO/ZnO/Graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater. Sep Purif Technol 251:117373. https://doi.org/10.1016/j.seppur.2020.117373

    Article  CAS  Google Scholar 

  10. Rezaei SS, Kakavandi B, Noorisepehr M, Isari AA, Zabih S, Bashardoust P (2021) Photocatalytic oxidation of tetracycline by magnetic carbon-supported TiO2 nanoparticles catalyzed peroxydisulfate: performance, synergy and reaction mechanism studies. Sep Purif Technol 258:117936. https://doi.org/10.1016/j.seppur.2020.117936

    Article  CAS  Google Scholar 

  11. Li XB, Xiong J, Gao XM, Ma J, Chen Z, Kang BB, Liu JY, Li H, Feng ZJ, Huang JT (2020) Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity. J Hazard Mater 387:121690. https://doi.org/10.1016/j.jhazmat.2019.121690

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Si MY, Jiang LB, Yuan XZ, Yu HB, Wu ZB, Li YF, Guo JY (2021) Core-shell Ag@nitrogen-doped carbon quantum dots modified BiVO4 nanosheets with enhanced photocatalytic performance under Vis-NIR light: synergism of molecular oxygen activation and surface plasmon resonance. Chem Eng J 410:128336. https://doi.org/10.1016/j.cej.2020.128336

    Article  CAS  Google Scholar 

  13. Kang J, Jin CY, Li ZL, Wang M, Chen ZQ, Wang YZ (2020) Dual Z-scheme MoS2/g-C3N4/Bi24O31Cl10 ternary heterojunction photocatalysts for enhanced visible-light photodegradation of antibiotic. J Alloys Compd 825:153975. https://doi.org/10.1016/j.jallcom.2020.153975

    Article  CAS  Google Scholar 

  14. Zhang J, Yan M, Yuan XZ, Si MY, Jiang LB, Wu ZB, Wang H, Zeng GM (2018) Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation. J Colloid Interface Sci 529:11–22. https://doi.org/10.1016/j.jcis.2018.05.109

    Article  CAS  PubMed  Google Scholar 

  15. Guan ZL, Li XM, Wu Y, Chen Z, Huang XD, Wang DB, Yang Q, Liu JL, Tian SH, Chen XY, Zhao H (2021) AgBr nanoparticles decorated 2D/2D GO/Bi2WO6 photocatalyst with enhanced photocatalytic performance for the removal of tetracycline hydrochloride. Chem Eng J 410:128283. https://doi.org/10.1016/j.cej.2020.128283

    Article  CAS  Google Scholar 

  16. Zhang Q, Wang M, Ao MY, Luo YB, Zhang AT, Zhao LN, Yan LS, Deng F, Luo XB (2019) Solvothermal synthesis of Z-scheme AgIn5S8/Bi2WO6 nanoheterojunction with excellent performance for photocatalytic degradation and Cr(VI) reduction. J Alloys Compd 805:41–49. https://doi.org/10.1016/j.jallcom.2019.06.331

    Article  CAS  Google Scholar 

  17. Li SJ, Xue B, Chen JL, Liu YP, Zhang JL, Wang HW, Liu JS (2021) Constructing a plasmonic p-n heterojunction photocatalyst of 3D Ag/Ag6Si2O7/Bi2MoO6 for efficiently removing broad-spectrum antibiotics. Sep Purif Technol 254:117579. https://doi.org/10.1016/j.seppur.2020.117579

    Article  CAS  Google Scholar 

  18. Zhang MM, Lai C, Li BS, Huang DL, Zeng GM, Xu P, Qin L, Liu SY, Liu XG, Yi H, Li MF, Chu CC, Chen Z (2019) Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: kinetics, intermediates, and mechanism insight. J Catal 369:469–481. https://doi.org/10.1016/j.jcat.2018.11.029

    Article  CAS  Google Scholar 

  19. Chen F, Yang Q, Sun J, Yao FB, Wang SN, Wang YL, Wang XL, Li XM, Niu CG, Wang DB, Zeng GM (2016) Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction undervisible-light irradiation: mineralization efficiency and mechanism. ACS Appl Mater Interfaces 8:32887–32900. https://doi.org/10.1021/acsami.6b12278

    Article  CAS  PubMed  Google Scholar 

  20. Lv JL, Dai K, Zhang JF, Lu LH, Liang CH, Geng L, Wang ZL, Yuan GY, Zhu GP (2017) In situ controllable synthesis of novel surface plasmonresonance-enhanced Ag2WO4/Ag/Bi2MoO6 composite for enhancedand stable visible light photocatalyst. Appl Surf Sci 391:507–515. https://doi.org/10.1016/j.apsusc.2016.05.001

    Article  CAS  Google Scholar 

  21. Li N, Gao H, Wang X, Zhao SJ, Lv D, Yang GQ, Gao XY, Fan HK, Gao YQ, Ge L (2020) Novel indirect Z-scheme g-C3N4/Bi2MoO6/Bi hollow microsphere heterojunctions with SPR-promoted visible absorption and highly enhanced photocatalytic performance. Chin J Catal 41:426–434. https://doi.org/10.1016/S1872-2067(19)63478-9

    Article  CAS  Google Scholar 

  22. Liu XM, Wu BQ, Chen XY, Yan LS, Guo HQ, Li KX, Xu LP, Lin J (2020) A novel hierarchical Bi2MoO6/Mn0.2Cd0.8S heterostructured nanocomposite for efficient visible-light hydrogen production. Int J Hydrog Energy 45:2884–2895. https://doi.org/10.1016/j.ijhydene.2019.11.197

    Article  CAS  Google Scholar 

  23. Zhen YZ, Yang CM, Shen HD, Xue WW, Gu CR, Feng JH, Zhang YC, Fu F, Liang YC (2020) Photocatalytic performance and mechanism insights of S-scheme g-C3N4/Bi2MoO6 heterostructure in phenol degradation and hydrogen evolution reaction under visible light. Phys Chem Chem Phys 22:26278–26288. https://doi.org/10.1039/D0CP02199G

    Article  CAS  PubMed  Google Scholar 

  24. Khazaee Z, Khavar AHC, Mahjoub AR, Motaee A, Srivastava V, Sillanpää M (2020) Template-confined growth of X-Bi2MoO6 (X: F, Cl, Br, I) nanoplates with open surfaces for photocatalytic oxidation; experimental and DFT insights of the halogen doping. Sol Energy 196:567–581. https://doi.org/10.1016/j.solener.2019.12.061

    Article  CAS  Google Scholar 

  25. Shi HX, Fan J, Zhao YY, Hu XY, Zhang X, Tang ZS (2020) Visible light driven CuBi2O4/Bi2MoO6 p-n heterojunction with enhanced photocatalytic inactivation of E coli and mechanism insight. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121006

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang XM, Gu WH, Ma YW, Zhai SY, Teng F (2020) Interface electron transfer of Bi2MoO6/MIL-125 and the visible-light performance for pollutant degradation. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2020.124748

    Article  Google Scholar 

  27. Xia Y, Shang SK, Zeng XR, Zhou J, Li YY (2019) A novel Bi2MoO6/ZIF-8 composite for enhanced visible light photocatalytic activity. Nanomaterials 9:545. https://doi.org/10.3390/nano9040545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao K, Zhang ZS, Feng YL, Lin SL, Li H, Gao X (2020) Surface oxygen vacancy modified Bi2MoO6/MIL-88B(Fe) heterostructure with enhanced spatial charge separation at the bulk & interface. Appl Catal B. https://doi.org/10.1016/j.apcatb.2020.118740

    Article  Google Scholar 

  29. Senkovska I, Hoffmann F, Fröba M, Getzschmann J, Böhlmann W, Kaskel S (2009) New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc = 2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc = 4,4’-biphenyl dicarboxylate). Microporous Mesoporous Mater 122:93–98. https://doi.org/10.1016/j.micromeso.2009.02.020

    Article  CAS  Google Scholar 

  30. Zou H, Zhou Y, Xiang Y, Deng YH, Tan YW, Tang HQ, Xu YF (2020) Preparation of flower-like DUT-5@BiOBr environmental purification functional material with natural photocatalytic activity. Adv Eng Mater 22:8. https://doi.org/10.1002/adem.202000267

    Article  CAS  Google Scholar 

  31. Ding J, Yang ZQ, He C, Tong XW, Li Y, Niu XJ, Zhang HG (2017) UiO-66(Zr) coupled with Bi2MoO6 as photocatalyst for visible-light promoted dye degradation. J Colloid Interface Sci 497:126–133. https://doi.org/10.1016/j.jcis.2017.02.060

    Article  CAS  PubMed  Google Scholar 

  32. Tian Y, Zhou F, Zhan S, Zhu ZY, He QC (2018) Mechanisms on the enhanced sterilization performance of fluorocarbon resin composite coatings modified by g-C3N4/Bi2MoO6 under the visible-light. J Photochem Photobiol A. https://doi.org/10.1016/j.jphotochem.2017.09.043

    Article  Google Scholar 

  33. Zhang J, Shao CL, Li XH, Xin JY, Tao R, Liu YC (2018) Assembling n-Bi2MoO6 nanosheets on electrospun p-CuAl2O4 hollow nanofibers: enhanced photocatalytic activity based on highly efficient charge separation and transfer. ACS Sustain Chem Eng 6:10714–10723. https://doi.org/10.1021/acssuschemeng

    Article  CAS  Google Scholar 

  34. Hua TP, Yang Y, Dai K, Zhang JF, Liang CH (2018) A novel Z-scheme Bi2MoO6/BiOBr photocatalyst for enhanced photocatalytic activity under visible light irradiation. Appl Surf Sci 456:473–481. https://doi.org/10.1016/j.apsusc.2018.06.186

    Article  CAS  Google Scholar 

  35. Wang M, You MY, Guo PY, Tang HY, Lv CM, Zhang Y, Zhu T, Han J (2017) Hydrothermal synthesis of Sm-doped Bi2MoO6 and its high photocatalytic performance for the degradation of Rhodamine B. J Alloys Compd 728:739–746. https://doi.org/10.1016/j.jallcom.2017.09.066

    Article  CAS  Google Scholar 

  36. Yao ZY, Sun HJ, Xiao SB, Hu YL, Liu XF, Zhang Y (2021) Synergetic piezo-photocatalytic effect in a Bi2MoO6/BiOBr composite for decomposing organic pollutants. Appl Surf Sci 560:150037. https://doi.org/10.1016/j.apsusc.2021.150037

    Article  CAS  Google Scholar 

  37. Zhang Z, Zou CT, Yang SJ, Yang ZY, Yang Y (2021) Ferroelectric polarization effect promoting the bulk charge separation for enhance the efficiency of photocatalytic degradation. Chem Eng J 410:128430. https://doi.org/10.1016/j.cej.2021.128430

    Article  CAS  Google Scholar 

  38. Ma D, Wu J, Gao MC, Xin YJ, Chai C (2017) Enhanced debromination and degradation of 2,4-dibromophenol by an Z-scheme Bi2MoO6/CNTs/g-C3N4 visible light photocatalyst. Chem Eng J 316:461–470. https://doi.org/10.1016/j.cej.2017.01.124

    Article  CAS  Google Scholar 

  39. Hasanvandian F, Shokri A, Moradi M, Kakavandi B, Setayesh SR (2022) Encapsulation of spinel CuCo2O4 hollow sphere in V2O5-decorated graphitic carbon nitride as high-efficiency double Z-type nanocomposite for levofloxacin photodegradation. J Hazard Mater 423:127090. https://doi.org/10.1016/j.jhazmat.2021.127090

    Article  CAS  PubMed  Google Scholar 

  40. Moradi S, Isari AA, Hayati F, Kalantary RR, Kakavandi B (2021) Co-implanting of TiO2 and liquid-phase-delaminated g-C3N4 on multi-functional graphene nanobridges for enhancing photocatalytic degradation of acetaminophen. Chem Eng J 414:128618. https://doi.org/10.1016/j.cej.2021.128618

    Article  CAS  Google Scholar 

  41. Li YX, Wang CC, Fu HF, Wang P (2021) Marigold-flower-like TiO2/MIL-125 core-shell composite for enhanced photocatalytic Cr(VI) reduction. J Environ Chem Eng 9:105451. https://doi.org/10.1016/j.jece.2021.105451

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21671026) and Scientific Research Fund of Hunan Provincial Education Department (Grant No. 20C0051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1845 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Yao, T., Tan, Y. et al. Preparation of a Novel Composite Material Aluminum-Based MOF(DUT-5)/Bi2MoO6 for Degradation of Tetracycline. Catal Lett 153, 1743–1755 (2023). https://doi.org/10.1007/s10562-022-04091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04091-3

Keywords

Navigation