Skip to main content
Log in

Preparation of a novel composite material LaCoO3/Bi2WO6 and its application in the treatment of tetracycline

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The 7:3LaCoO3/Bi2WO6 composite synthesized in this experiment had a significant effect on the degradation of TC in the solution under visible light (85.5% at 150min). The experimental results proved that the composite material not only had a high removal rate of TC in the water, but also could be recycled and met the requirements of environmental protection. XRD, SEM, FT-IR, XPS and other analysis showed that in the 7:3LaCoO3/Bi2WO6 composite, the two monomers LaCoO3 and Bi2WO6 were well combined together. The two active groups h+ and •O2- played an important role in the photocatalytic degradation process of the composite material. The electrons of the composite material moved from the conduction band of Bi2WO6 to the valence band of LaCoO3, which further enhanced the photocatalytic activity of the composite material. This research provided a new type of photocatalytic material for treating TC in water, also provided a certain theoretical support for the composite of lanthanide-based photocatalytic materials and bismuth-based photocatalytic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.L. Wang, R. Zhuan, L.B. Chu, Sci. Total. Environ (2019). https://doi.org/10.1016/j.scitotenv.2018.07.415

    Article  Google Scholar 

  2. M. Pan, L.M. Chu, Sci. Total. Environ (2017). https://doi.org/10.1016/j.scitotenv.2017.12.008

    Article  Google Scholar 

  3. M. Blaskovich, J. Zuegg, A. Elliott, A. Cooper, ACS. Infect. Dis (2015). https://doi.org/10.1021/acsinfecdis.5b00044

    Article  Google Scholar 

  4. C.A. Burnham, Clin Chem (2018). https://doi.org/10.1373/clinchem.2018.291658

    Article  Google Scholar 

  5. R. Deng, H. Luo, D.L. Huang, C. Zhang, Chemosphere (2020). https://doi.org/10.1016/j.chemosphere.2020.126975

    Article  Google Scholar 

  6. M.C. Roberts, S. Schwarz, J. Environ. Qual (2016). https://doi.org/10.2134/jeq2015.04.0207

    Article  Google Scholar 

  7. F. Yu, Y. Li, S. Han, J. Ma, Chemosphere (2016). https://doi.org/10.1016/j.chemosphere.2016.03.083

    Article  Google Scholar 

  8. T.W. Chen, L. Luo, S.H. Deng, G.Z. Shi, S.R. Zhang, Y.Z. Zhang, O.P. Deng, L.L. Wang, J. Zhang, L.Y. Wei, Bioresour. Technol (2018). https://doi.org/10.1016/j.biortech.2018.07.074

    Article  Google Scholar 

  9. V. Rizzi, J. Gubitosa, P. Fini, A. Petrella, R. Romita, A. Agostiano, P. Cosma, Environ. Technol. Inno (2020). https://doi.org/10.1016/j.eti.2020.100812

    Article  Google Scholar 

  10. S. Teixeira, C. Delerue-Matos, L. Santos, Sci. Total. Environ (2019). https://doi.org/10.1016/j.scitotenv.2018.07.204

    Article  Google Scholar 

  11. J.H. Carey, J. Lawrence, H.M. Tosine, B. Environ, Contam. Tox (1976). https://doi.org/10.1016/S0306-4603(75)80016-5

    Article  Google Scholar 

  12. M.S. Zhu, S. Kim, L. Mao, M. Fujitsuka, J.Y. Zhang, X.C. Wang, T. Majima, J. Am. Oil. Chem. Soc (2017). https://doi.org/10.1021/jacs.7b08416

    Article  Google Scholar 

  13. X.C. Meng, Z.Z. Li, Z.S. Zhang, J. Catal (2017). https://doi.org/10.1016/j.jcat.2017.09.005

    Article  Google Scholar 

  14. Z.F. Du, C. Cheng, L. Tan, J.W. Lan, S.X. Jiang, R.H. Guo, Appl. Surf. Sci (2018). https://doi.org/10.1016/j.apsusc.2017.11.136

    Article  Google Scholar 

  15. G.J. Li, Y.N. Wang, R. Huang, Y.Y. Hu, J. Guo, S.L. Zhang, Q. Zhong, Colloids. Surfaces. A (2020). https://doi.org/10.1016/j.colsurfa.2020.125256

    Article  Google Scholar 

  16. S. Jonjana, A. Phuruangrat, S. Thongtem, T. Thongtem, Mater Lett (2018). https://doi.org/10.1016/j.matlet.2018.01.005

    Article  Google Scholar 

  17. N.D. Phu, L.H. Hoang, P.V. Hai, T.Q. Huy, X.B. Chen, W.C. Chou, J. Alloy. Compd (2020). https://doi.org/10.1016/j.jallcom.2020.153914

    Article  Google Scholar 

  18. Q.Y. Tang, W.F. Chen, Y.R. Lv, S.Y. Yang, Y.H. Xu, Sep. Purif. Technol (2020). https://doi.org/10.1016/j.seppur.2019.116243

    Article  Google Scholar 

  19. S.Y. Song, H.D. Chen, C.X. Li, D.S. Shi, Y. Ying, Y.B. Han, J.C. Xu, B. Hong, H.X. Jin, D.F. Jin, X.L. Peng, H.L. Ge, X.Q. Wang, Chem. Phys (2020). https://doi.org/10.1016/j.chemphys.2019.110614

    Article  Google Scholar 

  20. F.Y. Zhu, Y.Z. Lv, J.J. Li, J. Ding, X.H. Xia, L.L. Wei, J.Q. Jiang, G.S. Zhang, Q.L. Zhao, Chemosphere (2020). https://doi.org/10.1016/j.chemosphere.2020.126577

    Article  Google Scholar 

  21. T. Huang, F. Tian, Z.P. Wen, G.F. Li, Y. Liang, R. Chen, J. Hazard. Mater (2021). https://doi.org/10.1016/j.jhazmat.2020.123661

    Article  Google Scholar 

  22. F. Ling, O.C. Anthony, Q. Xiong, M.P. Luo, X.W. Pan, L.S. Jia, J.L. Huang, D.H. Sun, Q.B. Li, Int J. Hydrogen. Energ (2016). https://doi.org/10.1016/j.ijhydene.2015.10.036

    Article  Google Scholar 

  23. S. Jayapandi, D. Lakshmi, S. Premkumar, P. Packiyaraj, K. Anitha, Mater. Lett (2018). https://doi.org/10.1016/j.matlet.2018.02.015

    Article  Google Scholar 

  24. Z.H. Jin, R.S. Hu, H.Y. Wang, J.N. Hu, T. Ren, Appl. Surf. Sci (2019). https://doi.org/10.1016/j.apsusc.2019.06.143

    Article  Google Scholar 

  25. J.F. Guo, P.T. Li, Z. Yang, Catal. Commun (2019). https://doi.org/10.1016/j.catcom.2019.01.022

    Article  Google Scholar 

  26. M. Ghasdi, H. Alamdari, Sensor. Actuat. B-Chem (2010). https://doi.org/10.1016/j.snb.2010.05.056

    Article  Google Scholar 

  27. L.P. Wang, G.P. Yang, D. Wang, C.Y. Lu, W.S. Guan, Y.L. Li, J. Deng, J. Crittenden, Appl. Surf. Sci (2019). https://doi.org/10.1016/j.apsusc.2019.07.263

    Article  Google Scholar 

  28. R.X. Yang, S. Zhong, L.S. Zhang, B.J. Liu, Sep. Purif. Technol (2020). https://doi.org/10.1016/j.seppur.2019.116270

    Article  Google Scholar 

  29. S.Y. Yao, J.M. Wu, W. Li, R.F. Zheng, R. Li, Y.Q. Chen, J. Luo, X.S. Zhou, Sep. Purif. Technol (2019). https://doi.org/10.1016/j.seppur.2019.115691

    Article  Google Scholar 

  30. P. Liang, D.D. Meng, Y. Liang, Z. Wang, C. Zhang, S.B. Wang, Z.H. Zhang, Chem. Eng. J (2021). https://doi.org/10.1016/j.cej.2020.128196

    Article  Google Scholar 

  31. L. Xu, H.N. Li, J.X. Xia, L.G. Wang, H. Xu, H.Y. Ji, H.M. Li, K.Y. Sun, Mater. Lett (2014). https://doi.org/10.1016/j.matlet.2014.04.110

    Article  Google Scholar 

  32. H.F. Ye, H.L. Lin, J. Cao, S.F. Chen, Y. Chen, J. Mol. Catal. A-Chem (2015). https://doi.org/10.1016/j.molcata.2014.11.005

    Article  Google Scholar 

  33. J.J. Liu, Z.Z. Luo, W.N. Han, Y. Zhao, P. Li, Mat. Sci. Semicon. Proc (2020). https://doi.org/10.1016/j.mssp.2019.104761

    Article  Google Scholar 

  34. F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, W.X. Hou, C. Wang, S.W. Long, C.Y. Lu, Appl. Surf. Sci (2019). https://doi.org/10.1016/j.apsusc.2019.06.158

    Article  Google Scholar 

  35. S.J. Li, S.W. Hu, K.B. Xu, W. Jiang, Y. Liu, L. Zhang, J.S. Liu, J. Colloid. Inter. Sci (2017). https://doi.org/10.1016/j.jcis.2017.06.018

    Article  Google Scholar 

  36. F. Guo, X.L. Huang, Z.H. Chen, H.J. Ren, M.Y. Li, L.Z. Chen, J. Hazard. Mate (2020). https://doi.org/10.1016/j.jhazmat.2020.122158

    Article  Google Scholar 

  37. M. Yan, Y.L. Wu, X.L. Liu, J. Alloy. Compd (2021). https://doi.org/10.1016/j.jallcom.2020.157548

    Article  Google Scholar 

  38. W. Jiang, Z. Li, C.B. Liu, D.D. Wang, G.S. Yan, B. Liu, G.B. Che, J. Alloy. Compd (2021). https://doi.org/10.1016/j.jallcom.2020.157166

    Article  Google Scholar 

  39. S.Q. Wu, X.Y. Li, Y.Q. Tian, Y. Lin, Y.H. Hu, Chem. Eng. J (2021). https://doi.org/10.1016/j.cej.2020.126747

    Article  Google Scholar 

  40. S. Heidari, M. Haghighi, M. Shabani, Ultrason. Sonochem (2018). https://doi.org/10.1016/j.ultsonch.2018.01.001

    Article  Google Scholar 

  41. M. Ding, J.J. Zhou, H.C. Yang, R.Y. Cao, S.W. Zhang, M.H. Shao, X.J. Xu, Chinese Chem. Lett (2019). https://doi.org/10.1016/j.cclet.2019.05.029

    Article  Google Scholar 

  42. X. Liu, A.L. Jin, Y.S. Jia, T.L. Xia, C.X. Deng, M.H. Zhu, C.F. Chen, X.S. Chen, Appl. Surf. Sci (2017). https://doi.org/10.1016/j.apsusc.2017.02.025

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Shaanxi Nature Science Basic Research Program (2019JM-429, 2019JQ-382), National Natural Science Foundation of China (21906039, 21906072). Funding project for introduced overseas scholars of Hebei Province (C20190321), Program for water resources research and promotion of Hebei Province (2019-55), Doctoral research fund of Hebei Geo University (BQ2019041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jifeng Guo or Changyu Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Xu, Y., Li, J. et al. Preparation of a novel composite material LaCoO3/Bi2WO6 and its application in the treatment of tetracycline. J Mater Sci: Mater Electron 32, 13813–13824 (2021). https://doi.org/10.1007/s10854-021-05957-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05957-9

Navigation