Skip to main content
Log in

Suzuki–Miyaura Cross Coupling Reaction Using Reusable Polymer Anchored Palladium Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Polystyrene anchored palladium (II) complex of 2-acetylbenzimidazole was synthesized and characterized by elemental analysis, FT-IR, UV–Vis/DRS spectroscopic and thermogravimetric analysis. Based on the analytical studies, square planar geometry was assigned to Pd (II) ion in the polymer supported palladium complex. The novel polymer supported palladium complex exhibited excellent catalytic activity towards Suzuki–Miyaura cross-coupling reaction of 4-bromoanisole with differently substituted boronic acids in H2O/EtOH solvent system, to obtain coupled products in excellent yields. Supported complex exhibited better activity and recyclability as compared to unsupported palladium complex. Based on the results obtained, a plausible mechanism for the Suzuki–Miyaura cross-coupling reaction has been proposed. Under the optimized reaction conditions, the complex showed recycling ability up to six runs without any metal leaching and not much loss in its catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig.4

Similar content being viewed by others

References

  1. Theeramunkong S, Caldarelli A, Massarotti A, Aprile S, Caprioglio D, Zaninetti R, Teruggi A, Pirali T, Grosa G, Tron GC, Genazzani AA (2011) J Med Chem 54(14):4977–4986. https://doi.org/10.1021/jm200555r

    Article  CAS  PubMed  Google Scholar 

  2. Hazari N, Melvin PR, Beromi MM (2017) Nat Rev 1:1–16. https://doi.org/10.1038/s41570-017-0025

    Article  CAS  Google Scholar 

  3. Len C, Bruniaux S, Delbecq F, Parmar VS (2017) Catalysts 7:146. https://doi.org/10.3390/catal7050146

    Article  CAS  Google Scholar 

  4. Mpungose PP, Vundla ZP, Maguire GEM, Friedrich HB (2018) Molecules 23:1676. https://doi.org/10.3390/molecules23071676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hooshmand SE, Heidari B, Sedghi R, Varma RS (2019) Green Chem 21:381–405. https://doi.org/10.1039/C8GC02860E

    Article  CAS  Google Scholar 

  6. Seechurn CCJ, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem Int Ed 51:5062–5085. https://doi.org/10.1002/anie.201107017

    Article  CAS  Google Scholar 

  7. Yan M-Q, Yuan J, Lan F, Zeng S-H, Gao M-Y, Liu S-H, Chena J, Yu G-A (2017) Org Biomol Chem 15:3924–3929. https://doi.org/10.1039/C7OB00178A

    Article  CAS  PubMed  Google Scholar 

  8. Han F-S (2013) Chem Soc Rev 42:5270. https://doi.org/10.1039/C3CS35521G

    Article  CAS  PubMed  Google Scholar 

  9. Buchspies J, Szostak M (2019) Catalysts 9:53. https://doi.org/10.3390/catal9010053

    Article  CAS  Google Scholar 

  10. Hatakeyama T, Hashimoto T, Kondo Y, Fujiwara Y, Seike H, Takaya H, Tamada Y, Ono T, Nakamura M (2010) J Am Chem Soc 132:10674–10676. https://doi.org/10.1021/ja103973a

    Article  CAS  PubMed  Google Scholar 

  11. Wu G, Von Wangelin AJ (2018) Nat Cat 1:377–378. https://doi.org/10.1038/s41929-018-0096-3

    Article  CAS  Google Scholar 

  12. Dwadnia N, Roger J, Pirio N, Cattey H, Salem RB, Hierso JC (2017) Chem Asian J 12(4):459–464. https://doi.org/10.1002/asia.201601583

    Article  CAS  PubMed  Google Scholar 

  13. Barbero M, Dughera S (2018) Tetrahedron 74:5758–5769. https://doi.org/10.1016/j.tet.2018.08.018

    Article  CAS  Google Scholar 

  14. Schäfer P, Palacin T, Sidera M, Fletcher SP (2017) Nat Comm 8:15762. https://doi.org/10.1038/ncomms15762

    Article  CAS  Google Scholar 

  15. Cahiez G, Moyeux A (2010) Chem Rev 110(3):1435–1462. https://doi.org/10.1021/cr9000786

    Article  CAS  PubMed  Google Scholar 

  16. Basnet P, Thapa S, Dickie DA, Giri R (2016) Chem Comm 52:11072–11075. https://doi.org/10.1039/C6CC05114F

    Article  CAS  PubMed  Google Scholar 

  17. Kumar LM, Ansari RA, Bhat BR (2018) Appl. Organometal. Chem. 32:e4054. https://doi.org/10.1002/aoc.4054

    Article  CAS  Google Scholar 

  18. Chen Y, Willis MC (2017) Chem Sci 8(4):3249–3253. https://doi.org/10.1039/C6SC05483H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gurung SK, Thapa S, Kafle A, Dickie DA, Giri R (2014) Org Lett 16(4):1264–1267. https://doi.org/10.1021/ol500310u

    Article  CAS  PubMed  Google Scholar 

  20. Miyaura N (2002) Cross-coupling reactions: a practical guide. Springer, Berlin. https://doi.org/10.1007/3-540-4533-x

    Book  Google Scholar 

  21. Anitha P, Manikandan R, Vijayan P, Viswanathamurthi P, Butcher RJ (2015) J Chem Sci 127:597–608. https://doi.org/10.1007/s12039-015-0811-4

    Article  CAS  Google Scholar 

  22. Contreras-Celedon CA, Mendoza-Rayo D, Rincon-Medina JA, Chancon-Garcia L (2014) Beilstein J Org Chem 10:2821–2826. https://doi.org/10.3762/bjoc.10.299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Emre Hanhan M (2008) Appl Organometal Chem 22:270–275. https://doi.org/10.1002/aoc.1389

    Article  CAS  Google Scholar 

  24. He Y, Chai C (2011) Catal Commun 12:678–683. https://doi.org/10.1016/j.catcom.2010.12.017

    Article  CAS  Google Scholar 

  25. Sarkar SM, Rahman ML, Yusoff MM (2015) New J Chem 39:3564–3570. https://doi.org/10.1039/c4nj0239f

    Article  CAS  Google Scholar 

  26. Suzuka T, Kimura K, Nagamine T (2011) Polymers 3:621–639. https://doi.org/10.3390/polym3010621

    Article  CAS  Google Scholar 

  27. Balinge KR, Khiratkar AG, Bhagat PR (2018) J Organomet Chem 854:131–139

    Article  CAS  Google Scholar 

  28. Kann N (2010) Molecules 15:6306–6331. https://doi.org/10.3390/molecules15096306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zarnegaryan A, Beni AS (2021) J Organomet Chem 953:122043

    Article  CAS  Google Scholar 

  30. Zhao XS, Bao XY, Guo W, Lee FY (2006) Mater Today 9(3):32–39

    Article  CAS  Google Scholar 

  31. Gomesa J, Maniezoa B, Alvesa P, Ferreiraa P, Martins R (2022) J Water Process Eng 46:102458

    Article  Google Scholar 

  32. Liu H, Tegl G, Nidetzkya B (2021) Adv Synth Catal 363:2157–2169

    Article  CAS  Google Scholar 

  33. Hombach L, Simitsis N, Thomas Vossen J, Vorholt AJ, Beine AK (2022). Chem Cat Chem. https://doi.org/10.1002/cctc.202101838

    Article  Google Scholar 

  34. Benaglia M, Puglisi A (eds) (2020) Catalyst immobilization: methods and applications. Wiley, Hoboken

    Google Scholar 

  35. Renuka MK, Gayathri V (2018) J Organomet Chem 874:26–31

    Article  CAS  Google Scholar 

  36. Jeevan Chakravarthy AS, Krishnamurthy MS, Begum NS, Hariprasad S (2016) Tetrahedron Lett 57:3231–3234

    Article  CAS  Google Scholar 

  37. Jeevan Chakravarthy AS, Krishnamurthy MS, Begum NS, Hariprasad S (2018) Arkivoc V 5:150–163

    Article  Google Scholar 

  38. Jeevan Chakravarthy AS, Krishnamurthy MS, Begum NS, Hariprasad S (2019) Mol Cryst Liquid Cryst 682(1):65–76

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank: (a) Madhura M J gratefully acknowledges to Thermax Ltd., India for providing chloromethylated poly (styrene-divinylbenzene) beads and Bangalore University for instrumental facilities. (b) Vision Group on Science and Technology, Government of Karnataka, INDIA, Grant No. VGST/CESEM/2018-19/GRD-745/2019-20/362/1 dated 10th January 2020. (c) A S Jeevan C, thank Prof. H. Ila and JNCASR, Bangalore for Institutional RA.

Author information

Authors and Affiliations

Authors

Contributions

ASJC, and MJM has equally contributed for the work in optimization and carrying out reactions. SH and VG has contributed equally in monitoring the work and preparation of manuscript.

Corresponding authors

Correspondence to S. Hariprasad or V. Gayathri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 807 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhura, M.J., Jeevan Chakravarthy, A.S., Hariprasad, S. et al. Suzuki–Miyaura Cross Coupling Reaction Using Reusable Polymer Anchored Palladium Catalyst. Catal Lett 153, 1141–1149 (2023). https://doi.org/10.1007/s10562-022-04055-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04055-7

Keywords

Navigation