Skip to main content

Advertisement

Log in

Green Synthesis of 5-Hydroxymethylfurfural in a Biphasic System Assisted by Microwaves

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Studies related to biomass are increasingly highlighted, since it is a renewable, sustainable, and abundant source of carbon, with the potential to replace oil and its derivatives. Several compounds are targets of research in this area, among which we can highlight 5-hydroxymethylfurfural (HMF), since it is a chemical platform that can be chemically transformed into a series of useful products, including biofuels. In this work fructose is converted to HMF with 74% yield and isolated with purity greater than 97%, employing a biphasic system (water/NaCl and ethyl acetate), using 1 mol% of p-sulfonic acid calix[4]arene (CX4SO3H)) as the organocatalyst, 140 °C, 10 min under microwave irradiation (MWI, 75 W). The aqueous phase (water/NaCl and CX4SO3H) was recyclable for five reaction cycles, with no significant drop in yields. In addition, the ethyl acetate recovered can be recovered at the end of the process, making it reusable. Therefore, with the methodology developed, it was possible to obtain the HMF in a recyclable, clean, sustainable system and in accordance with green chemistry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goswami DY, Kreith F (2016) Energy efficiency and renewable energy handbook, 2nd edn. CRC Press

    Google Scholar 

  2. Sorrell S, Speirs J, Bentley R, Brandt A, Miller R (2010) Global oil depletion: A review of the evidence. Energy Policy 38:5290–5295

    Article  Google Scholar 

  3. Hassan A, Ilyas SZ, Jalil A, Ullah Z (2021) Monetization of the environmental damage caused by fossil fuels. Environ Sci Pollut Res 28:21204–21211

    Article  Google Scholar 

  4. Capellán-Pérez I, Mediavilla M, de Castro C, Carpintero Ó, Miguel LJ (2014) Fossil fuel depletion and socio-economic scenarios: An integrated approach. Energy 77:641–666

    Article  Google Scholar 

  5. Zang H, Wang K, Zhang M, Xie R, Wang L, Chen EYX (2018) Catalytic coupling of biomass-derived aldehydes into intermediates for biofuels and materials. Catal Sci Technol 8:1777–1798

    Article  CAS  Google Scholar 

  6. Mittal A, Pilath HM, Johnson DK (2020) Direct Conversion of Biomass Carbohydrates to Platform Chemicals: 5-Hydroxymethylfurfural (HMF) and Furfural. Energy Fuels 34:3284–3293

    Article  CAS  Google Scholar 

  7. Corma Canos A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  Google Scholar 

  8. Hu L, Wu Z, Jiang Y, Wang X, He A, Song J, Xu J, Zhou S, Zhao Y, Xu J (2020) Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural. Renew Sustain Energy Rev 134:110317

    Article  CAS  Google Scholar 

  9. Kong QS, Li XL, Xu HJ, Fu Y (2020) Conversion of 5-hydroxymethylfurfural to chemicals: A review of catalytic routes and product applications. Fuel Process Technol 209:106528

    Article  CAS  Google Scholar 

  10. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem 13:754–793

    Article  CAS  Google Scholar 

  11. Lewkowski J (2001) Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives. ARKIVOC 2001:17–54

    Article  Google Scholar 

  12. Zhang J, Jia W, Sun Y, Yang S, Tang X, Zeng X, Lin L (2021) An efficient approach to synthesizing 2,5-bis(: N -methyl-aminomethyl)furan from 5-hydroxymethylfurfural via 2,5-bis(N -methyl-iminomethyl)furan using a two-step reaction in one pot. Green Chem 23:5656–5664

    Article  CAS  Google Scholar 

  13. Kisszekelyi P, Hardian R, Vovusha H, Chen B, Zeng X, Schwingenschlögl U, Kupai J, Szekely G (2020) Selective electrocatalytic oxidation of biomass-derived 5-Hydroxymethylfurfural to 2,5-diformylfuran: from mechanistic investigations to catalyst recovery. Chemsuschem 13:3127–3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yuan Z, Zhang Z, Zheng J, Lin J (2015) Efficient synthesis of promising liquid fuels 5-ethoxymethylfurfural from carbohydrates. Fuel 150:236–242

    Article  CAS  Google Scholar 

  15. Ramírez Bocanegra N, Rivera De la Rosa J, Lucio Ortiz CJ, Cubillas González P, Greenwell HC, Badillo Almaráz VE, Sandoval Rangel L, Alcántar-Vázquez B, Rodríguez-González V, Río DHD (2021) Catalytic conversion of 5-hydroxymethylfurfural (5-HMF) over Pd-Ru/FAU zeolite catalysts. Catal Today 360:2–11

    Article  Google Scholar 

  16. van Putten R-J, de Vries JG, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ (2013) Hydroxymethylfurfural, A Versatile Platform Chemical Made from renewable resources. Chem Rev 113:1499–1597

    Article  PubMed  Google Scholar 

  17. Despax S, Maurer C, Estrine B, Le Bras J, Hoffmann N, Marinkovic S, Muzart J (2014) Fast and efficient DMSO-mediated dehydration of carbohydrates into 5-hydroxymethylfurfural. Catal Commun 51:5–9

    Article  CAS  Google Scholar 

  18. Yu IKM, Tsang DCW (2017) Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresour Technol 238:716–732

    Article  CAS  PubMed  Google Scholar 

  19. Cao Q, Guo X, Yao S, Guan J, Wang X, Mu X, Zhang D (2011) Conversion of hexose into 5-hydroxymethylfurfural in imidazolium ionic liquids with and without a catalyst. Carbohydr Res 346:956–959

    Article  CAS  PubMed  Google Scholar 

  20. Tang J, Zhu L, Fu X, Dai J, Guo X, Hu C (2017) Insights into the Kinetics and reaction network of aluminum chloride-catalyzed conversion of glucose in NaCl-H2O/THF biphasic system. ACS Catal 7:256–266

    Article  CAS  Google Scholar 

  21. Román-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312:1933–1937

    Article  PubMed  Google Scholar 

  22. Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16:24–38

    Article  CAS  Google Scholar 

  23. Guo W, Heeres HJ, Yue J (2020) Continuous synthesis of 5-hydroxymethylfurfural from glucose using a combination of AlCl3 and HCl as catalyst in a biphasic slug flow capillary microreactor. Chem Eng J 381:122754

    Article  CAS  Google Scholar 

  24. Náray-Szabó G, Mika LT (2018) Conservative evolution and industrial metabolism in green chemistry. Green Chem 20:2171–2191

    Article  Google Scholar 

  25. Prat D, Wells A, Hayler J, Sneddon H, McElroy CR, Abou-Shehada S, Dunn PJ (2015) CHEM21 selection guide of classical- and less classical-solvents. Green Chem 18:288–296

    Article  Google Scholar 

  26. Román-Leshkov Y, Dumesic JA (2009) Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts. Top Catal 52:297–303

    Article  Google Scholar 

  27. Hansen TS, Mielby J, Riisager A (2011) Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water. Green Chem 13:109–114

    Article  CAS  Google Scholar 

  28. Du M, Agrawal AM, Chakraborty S, Garibay SJ, Limvorapitux R, Choi B, Madrahimov ST, Nguyen ST (2019) Matching the activity of homogeneous sulfonic acids: the fructose-to-hmf conversion catalyzed by hierarchically porous sulfonic-acid-functionalized porous organic polymer (POP) catalysts. ACS Sustain Chem Eng 7:8126–8135

    Article  CAS  Google Scholar 

  29. Meninno S (2020) Valorization of waste: sustainable organocatalysts from renewable resources. Chemsuschem 13:439–468

    Article  CAS  PubMed  Google Scholar 

  30. Liu D, Chen E (2014) Organocatalysis in biorefining for biomass conversion and upgrading. Green Chem 16:964–981

    Article  CAS  Google Scholar 

  31. Shimizu S, Shimada N, Sasaki Y (2006) Mannich-type reactions in water using anionic water-soluble calixarenes as recoverable and reusable catalysts. Green Chem 8:608–614

    Article  CAS  Google Scholar 

  32. Abranches PADS, de Paiva WF, de Fátima Â, Martins FT, Fernandes SA (2018) Calix[n]arene-catalyzed three-component povarov reaction: microwave-assisted synthesis of julolidines and mechanistic insights. J Org Chem 83:1761–1771

    Article  CAS  PubMed  Google Scholar 

  33. de Paiva WF, Braga IB, de Assis JV et al (2019) Microwave-assisted multicomponent synthesis of julolidines using silica-supported calix[4]arene as heterogeneous catalyst. Tetrahedron 75:3740–3750

    Article  Google Scholar 

  34. Liberto NA, Simões JB, de Paiva SS et al (2017) Quinolines: Microwave-assisted synthesis and their antifungal, anticancer and radical scavenger properties. Bioorganic Med Chem 25:1153–1162

    Article  CAS  Google Scholar 

  35. Braga IB, Castañeda SMB, Vitor De Assis J, Barros AO, Amarante GW, Valdo AKSM, Martins FT, Rosolen AFDP, Pilau E, Fernandes SA (2020) Anise essential oil as a sustainable substrate in the multicomponent double povarov reaction for julolidine synthesis. J Org Chem 85:15622–15630

    Article  CAS  PubMed  Google Scholar 

  36. Rezende TRM, Varejão JOS, Sousa ALLDA, Castañeda SMB, Fernandes SA (2019) Tetrahydroquinolines by the multicomponent Povarov reaction in water: Calix[n] arene-catalysed cascade process and mechanistic insights. Org Biomol Chem 17:2913–2922

    Article  CAS  PubMed  Google Scholar 

  37. Santos LS, Fernandes SA, Pilli RA, Marsaioli AJ (2003) A novel asymmetric reduction of dihydro-β-carboline derivatives using calix[6]arene/chiral amine as a host complex. Tetrahedron Asymmetry 14:2515–2519

    Article  CAS  Google Scholar 

  38. Liu YL, Liu L, Wang YL, Han YC, Wang D, Chen YJ (2008) Calix[n]arene sulfonic acids bearing pendant aliphatic chains as recyclable surfactant-type Brønsted acid catalysts for allylic alkylation with allyl alcohols in water. Green Chem 10:635–664

    Article  CAS  Google Scholar 

  39. de Paiva Silva Pereira S, Oliveira Santana Varejão J, de Fátima Â, Fernandes SA, (2019) p-Sulfonic acid calix[4]arene: A highly efficient organocatalyst for dehydration of fructose to 5-hydroxymethylfurfural. Ind Crops Prod 138:111492

    Article  Google Scholar 

  40. Castro GAD, Fernandes SA (2021) Microwave-assisted green synthesis of levulinate esters as biofuel precursors using calix[4]arene as an organocatalyst under solvent-free conditions. Sustain Energy Fuels 5:108–111

    Article  CAS  Google Scholar 

  41. David GF, Ríos-Ríos AM, de Fátima Â, Perez VH, Fernandes SA (2019) The use of p-sulfonic acid calix[4]arene as organocatalyst for pretreatment of sugarcane bagasse increased the production of levoglucosan. Ind Crops Prod 134:382–387

    Article  CAS  Google Scholar 

  42. Da Silva DL, Fernandes SA, Sabino AA, De Fá Â (2011) P-Sulfonic acid calixarenes as efficient and reusable organocatalysts for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones/-thiones. Tetrahedron Lett 52:6328–6330

    Article  Google Scholar 

  43. da Silva DL, Terra BS, Lage MR, Ruiz ALTG, da Silva CC, de Carvalho JE, Carneiro JWM, Martins FT, Fernades SA, de Fátima  (2015) Xanthenones: Calixarenes-catalyzed Syntheses, Anticancer Activity and QSAR Studies Daniel. Org Biomol Chem 13:3280–3287

    Article  PubMed  Google Scholar 

  44. Fernandes SA, Natalino R, Da Silva MJ, Lima CF (2012) A comparative investigation of palmitic acid esterification over p-sulfonic acid calix[4]arene and sulfuric acid catalysts via 1H NMR spectroscopy. Catal Commun 26:127–131

    Article  CAS  Google Scholar 

  45. Fernandes SA, Natalino R, Gazolla PAR, Da Silva MJ, Jham GN (2012) P-Sulfonic acid calix[n]arenes as homogeneous and recyclable organocatalysts for esterification reactions. Tetrahedron Lett 53:1630–1633

    Article  CAS  Google Scholar 

  46. Shinkai S, Mori S, Tsubaki T, Sone T, Manabe O (1987) New Syntheses of Calixarene-p-sulphonates and p-Nitrocalixarenes. J Chem Soc Perkin Trans. https://doi.org/10.1039/p19870002297

    Article  Google Scholar 

  47. Casnati A, Ca’ N Della, Sansone F, Ugozzoli F, Ungaro R, (2004) Enlarging the size of calix[4]arene-crowns-6 to improve Cs +/K+ selectivity: A theoretical and experimental study. Tetrahedron 60:7869–7876

    Article  CAS  Google Scholar 

  48. Gutsche C, Iqbal M (1990) p-tert-Buthylcalix[4]arene. Org Synth 68:234

    Article  CAS  Google Scholar 

  49. Yang F, Weng J, Ding J, Zhao Z, Qin L, Xia F (2020) Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite. Renew Energy 151:829–836

    Article  CAS  Google Scholar 

  50. Lucas N, Nagpure AS, Gurrala L, Gogoi P, Chilukuri S (2020) Efficacy of clay catalysts for the dehydration of fructose to 5-hydroxymethyl furfural in biphasic medium. J Porous Mater 27:1691–1700

    Article  Google Scholar 

  51. Shen Y, Kang Y, Sun J, Wang C, Wang B, Xu F, Sun R (2016) Efficient production of 5-hydroxymethylfurfural from hexoses using solid acid SO42−/In2O3-ATP in a biphasic system. Chinese J Catal 37:1362–1368

    Article  CAS  Google Scholar 

  52. Desai ML, Eisen EO (1966) Salt Effects in Liquid-Liquid Equilibria. J Chem Eng Data 11:480–484

    Article  Google Scholar 

  53. Esteban J, Vorholt AJ, Leitner W (2020) An overview of the biphasic dehydration of sugars to 5-hydroxymethylfurfural and furfural: A rational selection of solvents using COSMO-RS and selection guides. Green Chem 22:2097–2128

    Article  CAS  Google Scholar 

  54. Görgényi M, Dewulf J, Van Langenhove H, Héberger K (2006) Aqueous salting-out effect of inorganic cations and anions on non-electrolytes. Chemosphere 65:802–810

    Article  PubMed  Google Scholar 

  55. de Assis JV, Abranches PAS, Braga IB, Zuñiga OMP, Sathicq AG, Romanelli GP, Sato AG, Fernandes SA (2016) p-Sulfonic acid calix[4]arene-functionalized alkyl-bridged organosilica in esterification reactions. RSC Adv 6:24285–24289

    Article  Google Scholar 

  56. Natalino R, Varejão EVV, Da Silva MJ, Cardoso AL, Fernandes SA (2014) P-Sulfonic acid calix[n]arenes: The most active and water tolerant organocatalysts in esterification reactions. Catal Sci Technol 4:1369–1375

    Article  CAS  Google Scholar 

  57. Galkin KI, Krivodaeva EA, Romashov LV, Zalesskiy SS, Kachala VV, Burykina JV, Ananikov VP (2016) Critical influence of 5-hydroxymethylfurfural aging and decomposition on the utility of biomass conversion in organic synthesis. Angew Chemie 128:8478–8482

    Article  Google Scholar 

  58. Artigues A, Puy N, Bartrolí J, Fábregas E (2014) Comparative assessment of internal standards for quantitative analysis of bio-oil compounds by gas chromatography/mass spectrometry using statistical criteria. Energy Fuels 28:3908–3915

    Article  CAS  Google Scholar 

  59. Qi X, Watanabe M, Aida TM, Smith RL (2008) Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chem 10:799–880

    Article  CAS  Google Scholar 

  60. Wrigstedt P, Keskiväli J, Repo T (2016) Microwave-enhanced aqueous biphasic dehydration of carbohydrates to 5-hydroxymethylfurfural. RSC Adv 6:18973–18979

    Article  CAS  Google Scholar 

  61. Delbecq F, Wang YT, Len C (2017) Various carbohydrate precursors dehydration to 5-HMF in an acidic biphasic system under microwave heating using betaine as a co-catalyst. Mol Catal 434:80–85

    Article  CAS  Google Scholar 

  62. Sheldon RA (2017) The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem 19:18–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful Fundação de Amparo à Pesquisa do Estado de Minas Gerais – Brazil (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brazil (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES—Finance Code 001). SAF is supported by Research Fellowships from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Antonio Fernandes.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, G.A.D., Fernandes, S.A. Green Synthesis of 5-Hydroxymethylfurfural in a Biphasic System Assisted by Microwaves. Catal Lett 153, 984–994 (2023). https://doi.org/10.1007/s10562-022-04043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04043-x

Keywords

Navigation