Skip to main content

Catalytic Aerobic Oxidation of 5-Hydroxymethylfurfural (HMF) into 2,5-Furandicarboxylic Acid and Its Derivatives

  • Chapter
  • First Online:
Production of Platform Chemicals from Sustainable Resources

Part of the book series: Biofuels and Biorefineries ((BIOBIO))

Abstract

Catalytic synthesis of value-added chemicals from biomass is important for reducing current dependence on fossil-fuel resources. The bifunctional compound, 2,5-furandicarboxylic acid (FDCA) has wide application in many fields, particularly as a substitute for petrochemical-derived terephthalic acid in the synthesis of polymers. Therefore, much effort has been devoted to the catalytic synthesis of FDCA. In this chapter, a concise overview of up-to-date methods for the synthesis of FDCA from 5-hydroxymethylfurfural (HMF) or directly from carbohydrates by one-pot reaction is provided with special attention being given to catalytic systems, mechanistic insight, reaction pathway and catalyst stability. In addition, the one-pot oxidative conversion of carbohydrates into FDCA, and the one-pot synthesis of FDCA derivatives are discussed. It is anticipated that the chemistry detailed in this review will guide researchers to develop effective catalysts for economical and environmental-friendly synthesis of FDCA on a large-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem Rev. 2007;107(6):2411–502.

    Article  CAS  PubMed  Google Scholar 

  2. Bozell JJ. Connecting biomass and petroleum processing with a chemical bridge. Science. 2010;329(5991):522–3.

    Article  CAS  PubMed  Google Scholar 

  3. Gallezot P. Conversion of biomass to selected chemical products. Chem Soc Rev. 2012;41(4):1538–58.

    Article  CAS  PubMed  Google Scholar 

  4. Morais ARC, da Costa Lopes AM, Bogel-Łukasik R. Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev. 2014;115(1):3–27.

    Article  PubMed  Google Scholar 

  5. Liguori F, Moreno-Marrodan C, Barbaro P. Environmentally friendly synthesis of γ-valerolactone by direct catalytic conversion of renewable sources. ACS Catal. 2015;5(3):1882–94.

    Article  CAS  Google Scholar 

  6. Katryniok B, Paul S, Dumeignil F. Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catal. 2013;3(8):1819–34.

    Article  CAS  Google Scholar 

  7. Beerthuis R, Rothenberg G, Shiju NR. Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chem. 2015;17(3):1341–61.

    Article  CAS  Google Scholar 

  8. Amaniampong PN, Jia X, Wang B, Mushrif SH, Borgna A, Yang Y. Catalytic oxidation of cellobiose over TiO2 supported gold-based bimetallic nanoparticles. Catal Sci Tech. 2015;5(4):2393–405.

    Article  CAS  Google Scholar 

  9. Zhang J, Li J, Tang Y, Lin L, Long M. Advances in catalytic production of bio-based polyester monomer 2, 5-furandicarboxylic acid derived from lignocellulosic biomass. Carbohyd Polym. 2015;130:420–8.

    Article  CAS  Google Scholar 

  10. Hanson SK, Baker RT. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts. Acc Chem Res. 2015;48(7):2037–48.

    Article  CAS  PubMed  Google Scholar 

  11. Ma R, Xu Y, Zhang X. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem. 2015;8(1):24–51.

    Article  CAS  PubMed  Google Scholar 

  12. Zakrzewska ME, Bogel-Łukasik E, Bogel-Łukasik R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural: a promising biomass-derived building block. Chem Rev. 2010;111(2):397–417.

    Article  PubMed  Google Scholar 

  13. Zhang ZH, Liu B, Lv KL, Sun J, Deng KJ. Green Chem. 2015;16:2762–70.

    Article  Google Scholar 

  14. Lan J, Lin J, Chen Z, Yin G. Transformation of 5-hydroxymethylfurfural (HMF) to maleic anhydride by aerobic oxidation with heteropolyacid catalysts. ACS Catal. 2015;5(4):2035–41.

    Article  CAS  Google Scholar 

  15. Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S. Top value added chemicals from biomass. Volume 1: Results of screening for potential candidates from sugars and synthesis gas. U. S. Department of Energy report. Pacific Northwest National Laboratory/U.S. Department of Energy: Oak Ridge, TN. 2004.

    Google Scholar 

  16. Haworth WN, Jones WG, Wiggins LF. The conversion of sucrose into furan compounds. Part II. Some 2: 5-disubstituted tetrahydrofurans and their products of ring scission. J Chem Soc. 1945;1–4.

    Google Scholar 

  17. Jacquel N, Saint-Loup R, Pascault JP, Rousseau A. Bio-based alternatives in the synthesis of aliphatic–aromatic polyesters dedicated to biodegradable film applications. Polymer. 2015;59:234–42.

    Article  CAS  Google Scholar 

  18. Rajendran S, Raghunathan R, Hevus I, Krishnan R, Ugrinov A, Sibi MP, Sivaguru J. Programmed photodegradation of polymeric/oligomeric materials derived from renewable bioresources. Angew Chem Int Ed. 2015;54(4):1159–63.

    Article  CAS  Google Scholar 

  19. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CS, Gruter GJM, Silvestre AJ. Biobased polyesters and other polymers from 2, 5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem. 2015;6(33):5961–83.

    Article  CAS  Google Scholar 

  20. Eerhart AJJE, Faaij APC, Patel MK. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ Sci. 2012;5(4):6407–22.

    Article  CAS  Google Scholar 

  21. Gandini A, Silvestre AJ, Neto CP, Sousa AF, Gomes M. The furan counterpart of poly (ethylene terephthalate): an alternative material based on renewable resources. J Polym Sci Part A: Polym Chem. 2009;47(1):295–8.

    Article  CAS  Google Scholar 

  22. Gandini A. Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress. Polym Chem. 2010;1(3):245–51.

    Article  CAS  Google Scholar 

  23. Davis ME. Heterogeneous catalysis for the conversion of sugars into polymers. Top Catal. 2015;58(7–9):405–9.

    Article  CAS  Google Scholar 

  24. Lewkowski J. Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives. Arkivoc. 2001;1:17–54.

    Google Scholar 

  25. Nagarkar SS, Chaudhari AK, Ghosh SK. Selective CO2 adsorption in a robust and water-stable porous coordination polymer with new network topology. Inorg Chem. 2012;12:12572–6.

    Google Scholar 

  26. Rose M, Weber D, Lotsch BV, Kremer RK, Goddard R, Palkovits R. Biogenic metal–organic frameworks: 2, 5-furandicarboxylic acid as versatile building block. Microporous Mesoporous Mater. 2013;181:217–21.

    Article  CAS  Google Scholar 

  27. Fittig R, Heinzelmann H. Ueber neue Derivate der Schleimsaure. Chem Ber. 1876;9:1198.

    Google Scholar 

  28. Gonis G, Amstutz ED. The preparation of furan-2, 5-dicarboxylic acid. J Org Chem. 1962;27(8):2946–7.

    Article  CAS  Google Scholar 

  29. Miura T, Kakinuma H, Kawano T, Matsuhisa H. Method for producing furan-2, 5-dicarboxylic acid U.S. Patent. 2008; US-7411078.

    Google Scholar 

  30. Holade Y, Morais C, Servat K, Napporn TW, Kokoh KB. Toward the electrochemical valorization of glycerol: Fourier transform infrared spectroscopic and chromatographic studies. ACS Catal. 2013;3(10):2403–11.

    Article  CAS  Google Scholar 

  31. Ciriminna R, Palmisano G, Pagliaro M. Electrodes functionalized with the 2, 2, 6, 6-tetramethylpiperidinyloxy radical for the waste-free oxidation of alcohols. ChemCatChem. 2015;7(4):552–8.

    Article  CAS  Google Scholar 

  32. Grabowski G, Lewkowski J, Skowroński R. The electrochemical oxidation of 5-hydroxymethylfurfural with the nickel oxide/hydroxide electrode. Electrochim Acta. 1991;36:1995–1995.

    Google Scholar 

  33. Vuyyuru KR, Strasser P. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catal Today. 2012;195(1):144–54.

    Article  CAS  Google Scholar 

  34. Chadderdon DJ, Xin L, Qi J, Qiu Y, Krishna P, More KL, Li W. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles. Green Chem. 2014;16(8):3778–86.

    Article  CAS  Google Scholar 

  35. Cha HG, Choi KS. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nature chem. 2015;7(4):328–33.

    Article  CAS  Google Scholar 

  36. Thomas SM, DiCosimo R, Nagarajan V. Biocatalysis: applications and potentials for the chemical industry. Trends Biotechnol. 2002;20(6):238–42.

    Article  CAS  PubMed  Google Scholar 

  37. Krystof M, Perez-Sanchez M, de Maria PD. Lipase-mediated selective oxidation of furfural and 5-hydroxymethylfurfural. ChemSusChem. 2013;6(5):826–30.

    Article  CAS  PubMed  Google Scholar 

  38. Hanke PD. Enzymatic oxidation of HMF. USA Patent. 2009;2009/023174 A2

    Google Scholar 

  39. Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ. Efficient whole-cell biotransformation of 5-(hydroxymethyl) furfural into FDCA, 2, 5-furandicarboxylic acid. Bioresource Tech. 2010;101(16):6291–6.

    Article  CAS  Google Scholar 

  40. Dijkman WP, Groothuis DE, Fraaije MW. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2, 5-dicarboxylic acid. Angew Chem Int Ed. 2014;53(25):6515–8.

    Article  CAS  Google Scholar 

  41. Dijkman WP, Binda C, Fraaije MW, Mattevi A. Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase. ACS Catal. 2015;5(3):1833–9.

    Article  CAS  Google Scholar 

  42. Partenheimer W, Grushin VV. Synthesis of 2, 5-diformylfuran and furan-2, 5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal-bromide catalysts. Adv Synth Catal. 2001;343(1):102–11.

    Article  CAS  Google Scholar 

  43. Saha B, Dutta S, Abu-Omar MM. Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts. Cat Sci Technol. 2012;2(1):1.

    Article  Google Scholar 

  44. Hansen TS, Sadaba I, Garcia-Suarez EJ, Riisager A. Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions. Appl Catal A-Gen. 2014;456:44–50.

    Article  Google Scholar 

  45. Verdeguer P, Merat N, Gaset A. Oxydation catalytique du HMF en acide 2, 5-furane dicarboxylique. J Mol Catal. 1993;85(3):327–44.

    Article  CAS  Google Scholar 

  46. Rass HA, Essayem N, Besson M. Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion. Green Chem. 2013;15(8):2240–51.

    Article  Google Scholar 

  47. Ait Rass H, Essayem N, Besson M. Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2-and ZrO2-based supports. ChemSusChem. 2015;8(7):1206–17.

    Article  CAS  PubMed  Google Scholar 

  48. Niu W, Wang D, Yang G, Sun J, Wu M, Yoneyama Y, Tsubaki N. Pt nanoparticles loaded on reduced graphene oxide as an effective catalyst for the direct oxidation of 5-hydroxymethylfurfural (HMF) to produce 2, 5-furandicarboxylic acid (FDCA) under mild conditions. Bull Chem Soc Jpn. 2014;87(10):1124–9.

    Article  CAS  Google Scholar 

  49. Davis SE, Houk LR, Tamargo EC, Datye AK, Davis RJ. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Cataly Today. 2011;160(1):55–60.

    Article  CAS  Google Scholar 

  50. Vinke PV, Van Dam HE, Van Bekkum H. Platinum catalyzed oxidation of 5-hydroxymethylfurfural. Stud Surf Sci Catal. 1990;55:147–58.

    Article  CAS  Google Scholar 

  51. Vinke PV, Van der Poel W, Van Bekkum H. On the oxygen tolerance of noble metal catalysts in liquid phase alcohol oxidations the influence of the support on catalyst deactivation. Stud Surf Sci Catal. 1991;59:385–94.

    Article  CAS  Google Scholar 

  52. Raouf F, Taghizadeh M, Yousefi M. Influence of CaO-ZnO supplementation as a secondary catalytic bed on the oxidative coupling of methane. React Kinet Mech Catal. 2014;112(1):227–40.

    Article  CAS  Google Scholar 

  53. Miao Z, Wu T, Li J, Yi T, Zhang Y, Yang X. Aerobic oxidation of 5-hydroxymethylfurfural (HMF) effectively catalyzed by a Ce0.8Bi0.2O2-δ supported Pt catalyst at room temperature. RSC Adv. 2015;5(26):19823–9.

    Article  CAS  Google Scholar 

  54. Lilga MA, Hallen RT, Gray M. Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF). Top Catal. 2010;53(15–18):1264–9.

    Article  CAS  Google Scholar 

  55. Siankevich S, Savoglidis G, Fei Z, Laurenczy G, Alexander DT, Yan N, Dyson PJ. A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2, 5-Furandicarboxylic acid under mild conditions. J Catal. 2014;315:67–74.

    Article  CAS  Google Scholar 

  56. Siyo B, Schneider M, Pohl MM, Langer P, Steinfeldt N. Synthesis, characterization, and application of PVP-Pd NP in the aerobic oxidation of 5-hydroxymethylfurfural (HMF). Catal Lett. 2014;144(3):498–506.

    Article  CAS  Google Scholar 

  57. Gawade AB, Tiwari MS, Yadav GD. Biobased green process: selective hydrogenation of 5-hydroxymethyl furfural (HMF) to 2, 5-dimethyl furan (DMF) under mild conditions using Pd-Cs2.5H0.5PW12O40/K-10 clay. ACS Sustain Chem Eng. 2016;4(8):4113–23.

    Article  CAS  Google Scholar 

  58. Zhang ZH, Zhen JD, Liu B, Lv KL, Deng KJ. Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst. Green Chem. 2015;17(2):1308–17.

    Article  CAS  Google Scholar 

  59. Liu B, Ren YS, Zhang ZH. Aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid in water under mild conditions. Green Chem. 2015;17(3):1610–7.

    Article  CAS  Google Scholar 

  60. Mei N, Liu B, Zheng JD, Lv KL, Tang DG, Zhang ZH. A novel magnetic palladium catalyst for the mild aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid in water. Cataly Sci Tech. 2015;5(6):3194–202.

    Article  CAS  Google Scholar 

  61. Hutchings GJ. Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. J Catal. 1985;96(1):292–5.

    Article  CAS  Google Scholar 

  62. Haruta M, Kobayashi T, Sano H, Yamada N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C Chem Lett. 1987;(2):405–8.

    Google Scholar 

  63. Pan M, Brush AJ, Pozun ZD, Ham HC, Yu WY, Henkelman G, Mullins CB. Model studies of heterogeneous catalytic hydrogenation reactions with gold. Chem Soc Rev. 2013;42(12):5002–13.

    Article  CAS  PubMed  Google Scholar 

  64. Wittstock A, Wichmann A, Bäumer M. Nanoporous gold as a platform for a building block catalyst. ACS Catal. 2012;2(10):2199–215.

    Article  CAS  Google Scholar 

  65. Casanova O, Iborra S, Corma A. Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2, 5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem. 2009;2(12):1138–44.

    Article  CAS  PubMed  Google Scholar 

  66. Albonetti S, Lolli A, Morandi V, Migliori A, Lucarelli C, Cavani F. Conversion of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Au-based catalysts: Optimization of active phase and metal–support interaction. Appl Catal B: Environ. 2015;163:520–30.

    Article  CAS  Google Scholar 

  67. Zhang MZ, Zhang YB, Pan XQ, Wu TX, Zhang B, Li JW, Yang X, Ting Y, Zhang ZD, Yang XG. Superior catalytic performance of Ce1-xBixO2-δ solid solution and Au/Ce1-xBixO2-δ for 5-hydroxymethylfurfural conversion in alkaline aqueous solution. Catal Sci Tech. 2015;5(2):1314–22.

    Article  Google Scholar 

  68. Liu JX, Ma JP, Cai JY, Ma H, Du ZT, Xu J. Advances in catalytic synthesis of bio-based dicarboxylic acid. Science China Chem. 2015;45(5):526–32.

    CAS  Google Scholar 

  69. Gorbanev YY, Klitgaard SK, Woodley JM, Christensen CH, Riisager A. Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature. ChemSusChem. 2009;2(7):672–5.

    Article  CAS  PubMed  Google Scholar 

  70. Wu Y, Wang DS, Zhou G, Yu R, Chen C, Li YD. Sophisticated construction of Au islands on Pt-Ni: an ideal trimetallic nanoframe catalyst. J Am Chem Soc. 2014;136(33):11594–7.

    Article  CAS  PubMed  Google Scholar 

  71. Rasul S, Anjum DH, Jedidi A, Minenkov Y, Cavallo L, Takanabe K. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew Chem Int Ed. 2015;127(7):2174–217.

    Article  Google Scholar 

  72. Pasini T, Piccinini M, Blosi M, Bonelli R, Albonetti S, Dimitratos N, Hutchings GJ. Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold–copper nanoparticles. Green Chem. 2011;13(8):2091–9.

    Article  CAS  Google Scholar 

  73. Albonetti S, Pasini T, Lolli A, Blosi M, Piccinini M, Dimitratos N, Cavani F. Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported gold-copper catalysts prepared from preformed nanoparticles: effect of Au/Cu ratio. Catal Today. 2012;195(1):120–6.

    Article  CAS  Google Scholar 

  74. Villa A, Schiavoni M, Campisi S, Veith GM, Prati L. Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2, 5-furandicarboxylic acid. ChemSusChem. 2013;6(4):609–12.

    Article  CAS  PubMed  Google Scholar 

  75. Gupta NK, Nishimura S, Takagaki A, Ebitani K. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid under atmospheric oxygen pressure. Green Chem. 2011;13(4):824–7.

    Article  CAS  Google Scholar 

  76. Zope BN, Davis SE, Davis RJ. Influence of reaction conditions on diacid formation during Au-catalyzed oxidation of glycerol and hydroxymethylfurfural. Top Catal. 2012;55(1–2):24–32.

    Article  CAS  Google Scholar 

  77. Wan XY, Zhou CM, Chen JS, Deng WP, Zhang QH, Yang YH, Wang Y. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2, 5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au–Pd alloy nanoparticles. ACS Catal. 2014;4(7):2175–85.

    Article  CAS  Google Scholar 

  78. Artz J, Mallmann S, Palkovits R. Selective Aerobic Oxidation of HMF to 2, 5-Diformylfuran on Covalent Triazine Frameworks-Supported Ru Catalysts. ChemSusChem. 2015;8(4):672–9.

    Article  CAS  PubMed  Google Scholar 

  79. Nie JF, Xie JH, Liu HC. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on supported Ru catalysts. J Catal. 2013;301:83–91.

    Article  CAS  Google Scholar 

  80. Wang SG, Zhang ZH, Liu B, Li JL. Environmentally friendly oxidation of biomass derived 5-hydroxymethylfurfural into 2, 5-diformylfuran catalyzed by magnetic separation of ruthenium catalyst. Ind Eng Chem Res. 2014;53(14):5820–7.

    Article  CAS  Google Scholar 

  81. Gorbanev YY, Kegnæs S, Riisager A. Selective aerobic oxidation of 5-hydroxymethylfurfural in water over solid ruthenium hydroxide catalysts with magnesium-based supports. Catal Lett. 2011;141(12):1752–60.

    Article  CAS  Google Scholar 

  82. Gorbanev YY, Kegnæs S, Riisager A. Effect of support in heterogeneous ruthenium catalysts used for the selective aerobic oxidation of HMF in water. Top Catal. 2011;54(16–18):1318–24.

    Article  CAS  Google Scholar 

  83. Ståhlberg T, Eyjólfsdóttir E, Gorbanev YY, Sádaba I, Riisager A. Aerobic oxidation of 5-(hydroxymethyl) furfural in ionic liquids with solid ruthenium hydroxide catalysts. Catal Lett. 2012;142(9):1089–97.

    Article  Google Scholar 

  84. Davis SE, Zope BN, Davis RJ. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over supported Pt and Au catalysts. Green Chem. 2012;14(1):143–7.

    Article  CAS  Google Scholar 

  85. Davis SE, Benavidez AD, Gosselink RW, Bitter JH, De Jong KP, Datye AK, Davis RJ. Kinetics and mechanism of 5-hydroxymethylfurfural oxidation and their implications for catalyst development. J Mol Catal A: Chem. 2014;388:123–32.

    Article  Google Scholar 

  86. Zope BN, Hibbitts DD, Neurock M, Davis RJ. Reactivity of the gold/water interface during selective oxidation catalysis. Science. 2010;330:74–87.

    Article  CAS  PubMed  Google Scholar 

  87. Saha B, Gupta D, Abu-Omar MM, Modak A, Bhaumik A. Porphyrin-based porous organic polymer-supported iron (III) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2, 5-furandicarboxylic acid. J Catal. 2013;299:316–20.

    Article  CAS  Google Scholar 

  88. Gao LC, Deng KJ, Zheng JD, Liu B, Zhang ZH. Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid catalyzed by Merrifield resin supported cobalt porphyrin. Chem Eng J. 2015;270:444–9.

    Article  CAS  Google Scholar 

  89. Jain A, Jonnalagadda SC, Ramanujachary KV, Mugweru A. Selective oxidation of 5-hydroxymethyl-2-furfural to furan-2, 5-dicarboxylic acid over spinel mixed metal oxide catalyst. Catal Comm. 2015;58:179–82.

    Article  CAS  Google Scholar 

  90. Wang SG, Zhang ZH, Liu B. Catalytic Conversion of Fructose and 5-Hydroxymethylfurfural into 2, 5-Furandicarboxylic Acid over a Recyclable Fe3O4–CoOx Magnetite Nanocatalyst. ACS Sustain Chem Eng. 2015;3(3):406–12.

    Article  CAS  Google Scholar 

  91. Kröger M, Prüße U, Vorlop KD. A new approach for the production of 2, 5-furandicarboxylic acid by in-situ oxidation of 5-hydroxymethylfurfural starting from fructose. Top Catal. 2000;13(3):237–42.

    Article  Google Scholar 

  92. Ribeiro ML, Schuchardt U. Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2, 5-furandicarboxylic acid. Catal Comm. 2003;4(2):83–6.

    Article  CAS  Google Scholar 

  93. Yi G, Teong SP, Li X, Zhang Y. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2, 5-furandicarboxylic acid. ChemSusChem. 2014;7(8):2131–5.

    Article  CAS  PubMed  Google Scholar 

  94. Teong SP, Yi G, Cao X, Zhang Y. Poly-benzylic ammonium chloride resins as solid catalysts for fructose dehydration. ChemSusChem. 2014;7(8):2120–4.

    Article  CAS  PubMed  Google Scholar 

  95. Yi G, Teong SP, Zhang Y. The direct conversion of sugars into 2, 5-furandicarboxylic acid in a triphasic system. ChemSusChem. 2015;8(7):1151–5.

    Article  CAS  PubMed  Google Scholar 

  96. Taarning E, Nielsen IS, Egeblad K, Madsen R, Christensen CH. Chemicals from renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts. ChemSusChem. 2008;1(1–2):75–8.

    Article  CAS  PubMed  Google Scholar 

  97. Casanova O, Iborra S, Corma A. Biomass into chemicals: one pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2, 5-dimethylfuroate with gold on nanoparticulated ceria. J Catal. 2009;265(1):109–16.

    Article  CAS  Google Scholar 

  98. Deng J, Song HJ, Cui MS, Du YP, Fu Y. Aerobic oxidation of hydroxymethylfurfural and furfural by using heterogeneous CoxOy-N@C Catalysts. ChemSusChem. 2014;7(12):3334–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21203252) and the funding offered by the China scholarship council (201408420018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, Z., Zhou, P. (2017). Catalytic Aerobic Oxidation of 5-Hydroxymethylfurfural (HMF) into 2,5-Furandicarboxylic Acid and Its Derivatives. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Platform Chemicals from Sustainable Resources. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-4172-3_6

Download citation

Publish with us

Policies and ethics