Skip to main content

Advertisement

Log in

The Efficient Knoevenagel Condensation Promoted by Bifunctional Heterogenized Catalyst Based Chitosan-EDTA at Room Temperature

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An efficient heterogeneous catalyst-based low molecular weight chitosan (LWC) modified with EDTA groups were prepared and applied as a bifunctional heterogenized catalyst in the Knoevenagel Condensation reaction, promoting fast reactions between malononitrile and aldehydes or isatins at room temperature. Chitosan-EDTA (LWC-EDTA) catalysts were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA/DTA), powder X-ray diffraction (XRD). UV–Vis absorption spectrophotometry showed that the functionalization of chitosan with EDTA for 72 h promotes the most significant modification of the matrix surface compared to the others applied, reflecting shorter reaction times. The reactions using the LWC-EDTA-72 catalyst present excellent isolated yields (78–98%) in short reaction times (0.50–120 min) for differents Knoevenagel compounds. Additionaly, the catalyst was easily recovered and reused up to six times without significant losses of its catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yao C, Zhou S, Kang X, Zhao Y, Yan R, Zhang Y, Wen L (2018) Inorg Chem 57:11157–11164

    Article  CAS  PubMed  Google Scholar 

  2. Jones G (1964) Org React 204–273

  3. van Schijndel J, Canalle LA, Molendijk D, Meuldijk J (2017) Green Chem Lett Rev 10:404–411

    Article  Google Scholar 

  4. Zhai ZW, Yang SH, Lv YR, Du CX, Li LK, Zang SQ (2019) Dalton Trans 48:4007–4014

    Article  CAS  PubMed  Google Scholar 

  5. Hassan HMA, Elshaarawy RFM, Dey SK, Simon I, Janiak C (2017) Catal Lett 147:1998–2005

    Article  CAS  Google Scholar 

  6. Liu H, Li X, Ma Z, Sun M, Li M, Zhang Z, Zhang L, Tang Z, Yao Y, Huang B, Guo S (2021) Nano Lett 21:10284–10291

    Article  CAS  PubMed  Google Scholar 

  7. Zhao C, Xi M, Huo J, He C, Fu L (2022) Mater Today Phys 22:100609

    Article  CAS  Google Scholar 

  8. Shafiee A, Rabiee N, Ahmadi S, Baneshi M, Khatami M, Iravani S, Varma RS (2022) ACS Appl Nano Mater 1:55–86

    Article  Google Scholar 

  9. Lanzafame P, Perathoner S, Centi G, Gross S, Hensen EJM (2017) Catal Sci Technol 7:5182–5194

    Article  CAS  Google Scholar 

  10. Zhi Y, Wang Z, Zhang HL, Zhang Q (2020) Small 16:1–21

    Article  Google Scholar 

  11. Kaur P, Kumar B, Kumar V, Kumar R (2018) Tetrahedron Lett 59:1986–1991

    Article  CAS  Google Scholar 

  12. Zhang C, Lu D, Jiang P, Li J, Leng Y (2017) Catal Lett 147:2534–2541

    Article  CAS  Google Scholar 

  13. Cheng M, Cui Y, Yan X, Zhang R, Wang J, Wang X (2022) Food Hydrocoll 124:107225

    Article  CAS  Google Scholar 

  14. Abdelkrim EK (2015) Chem Sus Chem 8:217–244

    Article  Google Scholar 

  15. Dekamin MG, Azimoshan M, Ramezani L (2013) Green Chem 15:811–820

    Article  CAS  Google Scholar 

  16. Siddiqui ZN (2015) Tetrahedron Lett 56:1919–1924

    Article  CAS  Google Scholar 

  17. Anbu N, Hariharan S, Dhakshinamoorthy A (2019) Mol Catal 484:110744

    Article  Google Scholar 

  18. Huang G, Liu Y, Cai JL, Chen XF, Zhao SK, Guo YA, Wei SJ, Li X (2017) Appl Surf Sci 402:436–443

    Article  CAS  Google Scholar 

  19. Sarvestani M, Azadi R (2018) Appl Organomet Chem 32:1–9

    Article  Google Scholar 

  20. Repo E, Warchol JK, Kurniawan TA, Sillanpää MET (2010) Chem Eng J 161:73–82

    Article  CAS  Google Scholar 

  21. Netsomboon K, Suchaoin W, Laffleur F, Prüfert FA (2017) Eur J Pharm Biopharm 111:26–32

    Article  CAS  PubMed  Google Scholar 

  22. Singh K, Tiwary AK, Rana V (2013) Int J Biol Macromol 58:310–319

    Article  CAS  PubMed  Google Scholar 

  23. Zhao F, Repo E, Yin D, Chen L, Kalliola S, Tang J, Iakovleva E, Tam KC, Sillanpää M (2017) Sci Rep 7:15811–15818

    Article  PubMed Central  PubMed  Google Scholar 

  24. Donmez M, Oktem HA, Yilmaz MD (2018) Carbohydr Polym 180:226–230

    Article  CAS  PubMed  Google Scholar 

  25. Costa IF, Pires GP, Espínola JGP, Brito HF, Felinto MCFC, Faustino WM, Teotonio EES (2020) Luminescence 35:365–372

    Article  CAS  PubMed  Google Scholar 

  26. Fujita S, Sakairi N (2016) RSC Adv 6:10385–10392

    Article  CAS  Google Scholar 

  27. Capretta A, Maharajh RB, Bell RA (1995) Carbohydr Res 267:49–63

    Article  CAS  Google Scholar 

  28. Ferreira JMGO, De Resende FJBM, Batista PK, Teotonio EES, Vale JA (2018) J Braz Chem Soc 29:1382–1387

    CAS  Google Scholar 

  29. Ferreira JMGO, da Silva GA, Coelho MC, Lima Junior CG, Vale JA (2021) Results Chem 3:100135

    Article  CAS  Google Scholar 

  30. Taylor I, Howard AG (1993) Anal Chim Acta 271:77–82

    Article  Google Scholar 

  31. Focher B, Beltrame PL, Naggi A, Torri G (1990) Carbohydr Polym 12:405–418

    Article  CAS  Google Scholar 

  32. Alirezvani Z, Dekamin MG, Davoodi F, Valiey E (2018) ChemistrySelect 3:10450–10463

    Article  CAS  Google Scholar 

  33. Mondal J, Modak A, Bhaumik A (2011) J Mol Catal A 335:236–241

    Article  CAS  Google Scholar 

  34. Sakthivel B, Dhakshinamoorthy A (2017) J Colloid Interface Sci 485:75–80

    Article  CAS  PubMed  Google Scholar 

  35. Farzaneh F, Maleki MK, Ghandi M (2016) React Kinet Mech Catal 117:87–101

    Article  CAS  Google Scholar 

  36. Wang JS, Jin FZ, Ma HC, Li XB, Liu MY, Kan JL, Chen GJ, Dong YB (2016) Inorg Chem 55:6685–6691

    Article  CAS  PubMed  Google Scholar 

  37. Luan Y, Qi Y, Gao H, Andriamitantsoa RS, Zheng N, Wang G (2015) J Mater Chem A 3:17320–17331

    Article  CAS  Google Scholar 

  38. Tavakolian M, Najafpour MM (2019) New J Chem 43:16437–16440

    Article  CAS  Google Scholar 

  39. Martínez F, Orcajo G, Briones D, Leo P, Calleja G (2017) Microporous Mesoporous Mater 246:43–50

    Article  Google Scholar 

  40. de Resende FJBM, Pires GP, Ferreira JMGO, Teotonio EES, Vale JA (2017) Catal Lett 147:167–180

    Article  Google Scholar 

  41. Gupta N, Roy T, Ghosh D, Abdi SHR, Kureshy RI, Khan NUH, Bajaj HC (2015) RSC Adv 5:17843–17850

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 304403/2017-2) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, 88882.440011/2019-01) for their financial support. They are also grateful to the Financiadora de Estudos e Projetos (FINEP), and Projeto Produtividade em Pesquisa (PROPESQ/PRPG/UFPB, PVA13317-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Alves Vale.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10562_2022_4034_MOESM1_ESM.docx

Supplementary file1 (DOCX 4527 kb) The reagents and instruments, TGA/DTA in synthetic air atmosphere of the studied samples, the quantification of NH2- groups in the functionalized chitosan polymers and precursors and the 1H and 13C NMR spectral data of the products for the selected compounds will be found in the supplementary data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Abrantes, P.G., Costa, I.F., Falcão, N.K.S.M. et al. The Efficient Knoevenagel Condensation Promoted by Bifunctional Heterogenized Catalyst Based Chitosan-EDTA at Room Temperature. Catal Lett 153, 945–955 (2023). https://doi.org/10.1007/s10562-022-04034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04034-y

Keywords

Navigation