Skip to main content
Log in

Bi/Bi2WO6 Plasmonic Composites with Enhanced Photocatalytic Activity for Degradation of Gasphase Toluene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Semimetal bismuth with plasmonic properties has attracted more and more interest to enhance photocatalytic activity. Herein Bi/Bi2WO6 composites catalyst was successfully synthesized via a simple two-step route in solvothermal reaction. Compared with pure Bi2WO6, the photocatalytic degradation efficiency of gasphase toluene of the Bi/Bi2WO6 composites is significantly increased from 44 to 93%, and the degradation efficiency increased by more than two times. From the analysis of UV–vis diffuse reflectance spectra, it is obvious that the optical absorption in visible light region of Bi/Bi2WO6 composites has significantly enhanced compared to pure Bi2WO6, which is due to the surface plasmon resonance (SPR) of Bi nanoparticles on the surface of pure Bi2WO6. The dramatically enhanced activity could be attributed to the synergistic effect of the strong SPR of Bi metals and the enhancement of charge separation efficiency caused by the interfacial interaction between Bi metal and Bi2WO6.

Graphical Abstract

Compared with pure Bi2WO6, the photocatalytic degradation efficiency of gasphase toluene of the Bi/Bi2WO6 composites is significantly increased from 44 to 93%, and the degradation efficiency increased by more than two times. The dramatically enhanced activity could be attributed to the synergistic effect of the strong SPR of Bi metals and the enhancement of charge separation efficiency caused by the interfacial interaction between Bi metal and Bi2WO6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu SW, Yu JG, Jaroniec M (2010) Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed 001 facets. J Am Chem Soc 132(34):11914–11916. https://doi.org/10.1021/ja105283s

    Article  CAS  Google Scholar 

  2. Zhang L, Qin MK, Yu W, Zhang QH, Xie HY, Sun ZG, Shao Q, Guo XK, Hao LH, Zheng YJ, Guo ZH (2017) Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J Electrochem Soc 164(14):H1086–H1090. https://doi.org/10.1149/2.0881714jes

    Article  CAS  Google Scholar 

  3. Yang XF, Qin JL, Jiang Y, Chen KM, Yan XH, Zhang D, Li R, Tang H (2015) Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria. Appl Catal B 66:231–240. https://doi.org/10.1016/j.apcatb.2014.11.02

    Article  Google Scholar 

  4. Ge L, Han CC, Liu J (2011) Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl Catal B 108(1–2):100–107. https://doi.org/10.1016/j.apcatb.2011.08.014

    Article  CAS  Google Scholar 

  5. Ye LQ, Liu JY, Jiang Z, Peng TY, Zan L (2013) Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl Catal B 142:1–7. https://doi.org/10.1016/j.apcatb.2013.04.058

    Article  CAS  Google Scholar 

  6. Chen F, Yang Q, Li XM, Zeng GM, Wang DB, Niu CG, Zhao JW, An HX, Xie T, Deng YC (2017) Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation. Appl Catal B 200:330–342. https://doi.org/10.1016/j.apcatb.2016.07.021

    Article  CAS  Google Scholar 

  7. Chen ZH, Wang WL, Zhang ZG, Fang XM (2013) High-efficiency visible-light-driven Ag3PO4/AgI photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic activity. J Phys Chem C 117(38):19346–19352. https://doi.org/10.1021/jp406508y

    Article  CAS  Google Scholar 

  8. Wetchakun N, Chaiwichain S, Inceesungvorn B, Pingmuang K, Phanichphant S, Minett AI, Chen J (2012) BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS Appl Mater Interfaces 4(7):3718–3723. https://doi.org/10.1021/am300812n

    Article  CAS  Google Scholar 

  9. Han C, Chen Z, Zhang N, Colmenares JC, Xu YJ (2015) Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance. Adv Funct Mater 25(2):221–229. https://doi.org/10.1002/adfm.201402443

    Article  CAS  Google Scholar 

  10. Zhou YG, Zhang YF, Lin MS, Long JL, Zhang ZZ, Lin HX, Wu JCS, Wang XX (2015) Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat Commun 6:8. https://doi.org/10.1038/ncomms9340

    Article  Google Scholar 

  11. Zhu YY, Wang YJ, Ling Q, Zhu YF (2017) Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 clomposites. Appl Catal B 200:222–229. https://doi.org/10.1016/j.apcatb.2016.07.002

    Article  CAS  Google Scholar 

  12. Huang Y, Kang S, Yang Y et al (2016) Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light. Appl Catal B 196:89–99. https://doi.org/10.1016/j.apcatb.2016.05.022

    Article  CAS  Google Scholar 

  13. Huang T, Tian F, Wen Z et al (2021) Synergistic mediation of metallic bismuth and oxygen vacancy in Bi/Bi2WO6-x to promote 1O2 production for the photodegradation of bisphenol A and its analogues in water matrix. J Hazard Mater 403:123661. https://doi.org/10.1016/j.jhazmat.2020.123661

    Article  CAS  Google Scholar 

  14. Ren J, Wang WZ, Sun SM, Zhang L, Chang J (2009) Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation. Appl Catal B 92(1–2):50–55. https://doi.org/10.1016/j.apcatb.2009.07.022

    Article  CAS  Google Scholar 

  15. Xia JX, Di J, Yin S, Xu H, Zhang J, Xu YG, Xu L, Li HM, Ji MX (2014) Facile fabrication of the visible-light-driven Bi2WO6/BiOBr composite with enhanced photocatalytic activity. RSC Adv 4(1):82–90. https://doi.org/10.1039/c3ra44191a

    Article  CAS  Google Scholar 

  16. Wang JJ, Tang L, Zeng GM, Deng YC, Liu YN, Wang LG, Zhou YY, Guo Z, Wang JJ, Zhang C (2017) Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Appl Catal B 209:285–294. https://doi.org/10.1016/j.apcatb.2017.03.019

    Article  CAS  Google Scholar 

  17. Zhang ZJ, Wang WZ, Wang L, Sun SM (2012) Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi2S3/Bi2WO6. ACS Appl Mater Interfaces 4(2):593–597. https://doi.org/10.1021/am2017199

    Article  CAS  Google Scholar 

  18. Liu L, Ding L, Liu YG, An WJ, Lin SL, Liang YH, Cui WQ (2016) Enhanced visible light photocatalytic activity by Cu2O-coupled flower-like Bi2WO6 structures. Appl Surf Sci 364:505–515. https://doi.org/10.1016/j.apsusc.2015.12.170

    Article  CAS  Google Scholar 

  19. Chen X, Li L, Zhang WZ, Li YX, Song Q, Zhang JQ, Liu D (2016) Multi-pathway photoelectron migration in globular flower-like In2O3/AgBr/Bi2WO6 synthesized by microwave-assisted method with enhanced photocatalytic activity. J Mol Catal A 414:27–36. https://doi.org/10.1016/j.molcata.2015.12.023

    Article  CAS  Google Scholar 

  20. Wang M, Han QT, Li L, Tang LQ, Li HJ, Zhou Y, Zou G (2017) Construction of an all-solid-state artificial Z-scheme system consisting of Bi2WO6/Au/CdS nanostructure for photocatalytic CO2 reduction into renewable hydrocarbon fuel. Nanotechnology 28(27):1–8. https://doi.org/10.1088/1361-6528/aa6bb5

    Article  CAS  Google Scholar 

  21. Ye LQ, Liu JY, Gong CQ, Tian LH, Peng TY, Zan L (2012) Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. ACS Catal 2(8):1677–1683. https://doi.org/10.1021/cs300213m

    Article  CAS  Google Scholar 

  22. Lin HL, Cao J, Luo BD, Xu BY, Chen SF (2012) Synthesis of novel Z-scheme AgI/Ag/AgBr composite with enhanced visible light photocatalytic activity. Catal Commun 21:91–95. https://doi.org/10.1016/j.catcom.2012.02.008

    Article  CAS  Google Scholar 

  23. Lu Y, Zhao K, Zhao YH, Zhu SY, Yuan X, Huo MX, Zhang Y, Qiu Y (2015) Bi2WO6/TiO2/Pt nanojunction system: a UV-vis light responsive photocatalyst with high photocatalytic performance. Colloid Surf A 481:252–260. https://doi.org/10.1016/j.colsurfa.2015.05.037

    Article  CAS  Google Scholar 

  24. Meng J, Xiong XQ, Zhang X, Xu YM (2018) Improved photocatalytic degradation of chlorophenol over Pt/Bi2WO6 on addition of phosphate. Appl Surf Sci 439:859–867. https://doi.org/10.1016/j.apsusc.2017.12.247

    Article  CAS  Google Scholar 

  25. Liang YH, Lin SL, Liu L, Hu JS, Cui WQ (2015) Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: enhanced photocatalytic degradation under visible light irradiation. Appl Catal B 164:192–203. https://doi.org/10.1016/j.apcatb.2014.08.048

    Article  CAS  Google Scholar 

  26. Li JQ, Guo ZY, Zhu ZF (2014) Ag/Bi2WO6 plasmonic composites with enhanced visible photocatalytic activity. Ceram Int 40(5):6495–6501. https://doi.org/10.1016/j.ceramint.2013.11.102

    Article  CAS  Google Scholar 

  27. He WW, Kim HK, Warner WG, Melka D, Callahan JH, Yin JJ (2014) Photogenerated charge carrier and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc 136(2):750–757. https://doi.org/10.1021/ja410800y

    Article  CAS  Google Scholar 

  28. Phuruangrat A, Maneechote A, Dumrongrojthanath P, Ekthammathat N, Thongtem S, Thongtem T (2015) Visible-light driven photocatalytic degradation of rhodamine B by Ag/Bi2WO6 heterostructures. Mater Lett 159:289–292. https://doi.org/10.1016/j.matlet.2015.07.029

    Article  CAS  Google Scholar 

  29. Wu QS, Cui Y, Yang LM, Zhang GY, Gao DZ (2015) Facile in-situ photocatalysis of Ag/Bi2WO6 heterostructure with obviously enhanced performance. Sep Purif Technol 142:168–175. https://doi.org/10.1016/j.seppur.2014.12.039

    Article  CAS  Google Scholar 

  30. Liu JY, Bai Y, Wang PQ (2013) Photocatalytic degradation of phenol using Au/Bi2WO6 composite microspheres under visible-light irradiation. Micro Nano Lett 8(2):90–93. https://doi.org/10.1049/mnl.2012.0759

    Article  CAS  Google Scholar 

  31. Zhang JN, Chen TH, Lu HB, Yang ZB, Yin F, Gao JZ, Liu QR, Tu YF (2017) Hierarchical Bi2WO6 architectures decorated with Pd nanoparticles for enhanced visible-light-driven photocatalytic activities. Appl Surf Sci 404:282–290. https://doi.org/10.1016/j.apsusc.2017.01.294

    Article  CAS  Google Scholar 

  32. Yu CL, Bai Y, Chen JC, Zhou WQ, He HB, Yu JC, Zhu LH, Xue SS (2015) Pt/Bi2WO6 composite microflowers: High visible light photocatalytic performance and easy recycle. Sep Purif Technol 154:115–122. https://doi.org/10.1016/j.seppur.2015.09.034

    Article  CAS  Google Scholar 

  33. Liu XW, Cao HQ, Yin JF (2011) Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Res 4(5):470–482. https://doi.org/10.1007/s12274-011-0103-3

    Article  CAS  Google Scholar 

  34. Wang Z, Jiang CL, Huang R, Peng H, Tang XD (2014) Investigation of optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method. J Phys Chem C 118(2):1155–1160. https://doi.org/10.1021/jp4065505

    Article  CAS  Google Scholar 

  35. Zhou XM, Liu G, Yu JG, Fan WH (2012) Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light. J Mater Chem 22(40):21337–21354. https://doi.org/10.1039/c2jm31902k

    Article  CAS  Google Scholar 

  36. Zhao ZW, Zhang WD, Sun YJ, Yu JY, Zhang YX, Dong F, Wu ZB (2016) Bi cocatalyst/Bi2MoO6 microspheres nanohybrid with SPR-promoted visible-light photocatalysis. J Phys Chem C 120(22):11889–11898. https://doi.org/10.1021/acs.jpcc.6b01188

    Article  CAS  Google Scholar 

  37. Zhang XJ, Yu S, Liu Y, Zhang Q, Zhou Y (2017) Photoreduction of non-noble metal Bi on the surface of Bi2WO6 for enhanced visible light photocatalysis. Appl Surf Sci 396:652–658. https://doi.org/10.1016/j.apsusc.2016.11.002

    Article  CAS  Google Scholar 

  38. Wang B, Feng WH, Zhang LL, Zhang Y, Huang XY, Fang ZB, Liu P (2017) In situ construction of a novel Bi/CdS nanocomposite with enhanced visible light photocatalytic performance. Appl Catal B 206:510–519. https://doi.org/10.1016/j.apcatb.2017.01.047

    Article  CAS  Google Scholar 

  39. Wang JJ, Tang L, Zeng GM, Liu YN, Zhou YY, Deng YC, Wang JJ, Peng B (2017) Plasmonic Bi metalss deposition and g-C3N4 coating on Bi2WO6 microspheres for efficient visible-light photocatalysis. ACS Sustain Chem Eng 5(1):1062–1072. https://doi.org/10.1021/acssuschemeng.6b02351

    Article  CAS  Google Scholar 

  40. Hao Q, Wang RT, Lu HJ, Xie CA, Ao WH, Chen DM, Ma C, Yao WQ, Zhu YF (2017) One-pot synthesis of C/Bi/Bi2O3 composite with enhanced photocatalytic activity. Appl Catal B 219:63–72. https://doi.org/10.1016/j.apcatb.2017.07.030

    Article  CAS  Google Scholar 

  41. Yang J, Wang XH, Zhao XL, Dai J, Mo S (2015) Synthesis of uniform Bi2WO6-reduced graphene oxide nanocomposites with significantly enhanced photocatalytic reduction activity. J Phys Chem C 119(6):3068–3078. https://doi.org/10.1021/jp510041x

    Article  CAS  Google Scholar 

  42. Huang YK, Kang SF, Yang Y, Qin HF, Ni ZJ, Yang SJ, Li X (2016) Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light. Appl Catal B 196:89–99. https://doi.org/10.1016/j.apcatb.2016.05.022

    Article  CAS  Google Scholar 

  43. Yang WJ, Ma B, Wang WC, Wen YW, Zeng DW, Shan B (2013) Enhanced photosensitized activity of a BiOCl-Bi2WO6 heterojunction by effective interfacial charge transfer. Phys Chem Chem Phys 15(44):19387–19394. https://doi.org/10.1039/c3cp53628a

    Article  CAS  Google Scholar 

  44. Guo Y, Zhang Y, Tian N et al (2016) Homogeneous {001}-BiOBr/Bi heterojunctions: facile controllable synthesis and morphology-dependent photocatalytic activity. ACS Sustain Chem Eng 4(7):4003–4012. https://doi.org/10.1021/acssuschemeng.6b00884

    Article  CAS  Google Scholar 

  45. Lu SY, Yu YN, Bao SJ et al (2015) In situ synthesis and excellent photocatalytic activity of tiny Bi decorated bismuth tungstate nanorods. RSC Adv 5(104):85500–85505. https://doi.org/10.1039/c5ra15406e

    Article  CAS  Google Scholar 

  46. Wang JJ, Tang L, Zeng GM, Deng YC, Dong HR, Liu YN, Wang LL, Peng B, Zhang C, Chen F (2018) OD/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight. Appl Catal B 222:115–123. https://doi.org/10.1016/j.apcatb.2017.10.014

    Article  CAS  Google Scholar 

  47. Du ZF, Cheng C, Tan L, Lan JW, Jiang SX, Zhao LD, Guo RH (2018) Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation. Appl Surf Sci 435:626–634. https://doi.org/10.1016/j.apsusc.2017.11.136

    Article  CAS  Google Scholar 

  48. Wang K, Li Y, Zhang GK, Li J, Wu XY (2019) 0D Bi nanodots/2D Bi3NbO7 nanosheets heterojunctions for efficient visible light photocatalytic degradation of antibiotics: enhanced molecular oxygen activation and mechanism insight. Appl Catal B 240:39–49. https://doi.org/10.1016/j.apcatb.2018.08.063

    Article  CAS  Google Scholar 

  49. Wang H, Yuan X, Wu Y et al (2017) Plasmonic Bi nanoparticles and BiOCl sheets as cocatalyst deposited on perovskite-type ZnSn(OH)6 microparticle with facet-oriented polyhedron for improved visible-light-driven photocatalysis. Appl Catal B 209:543–553. https://doi.org/10.1016/j.apcatb.2017.03.024

    Article  CAS  Google Scholar 

  50. Yu H, Jiang L, Wang H et al (2019) Photocatalysis: modulation of Bi2MoO6 based materials for photocatalytic water splitting and environmental application: a critical review (Small 23/2019). Small. https://doi.org/10.1002/smll.201901008

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports from National Natural Science Foundation of China (No. 21802119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Sun, H., Zhu, Y. et al. Bi/Bi2WO6 Plasmonic Composites with Enhanced Photocatalytic Activity for Degradation of Gasphase Toluene. Catal Lett 153, 559–569 (2023). https://doi.org/10.1007/s10562-022-04001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04001-7

Keywords

Navigation