Skip to main content
Log in

Plasma Engraved Bi2MoO6 for Enhanced Photocatalytic Nitrate Reduction Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Photocatalytic nitrate removal to produce recyclable netrogen (N2) without using chemical reductants is regarded as an environmentally friendly and effective technology for denitrification. However, the sluggish cathode reaction kinetics severely hampered the efficiency of nitrate reduction reaction (NO3RR). Developing high performance photocatalyst is highly pursued for boosting NO3RR. In this study, Bi2MoO6 nanosheets with massive oxygen vacancies are fabricated through hydrothermal reaction and subsequent plasma modification. Maximal nitrate conversion yield of 38% with the high N2 selectivity of 80.0% is achieved for photocatalytic NO3RR. The underlying photocatalytic mechanism is systemically investigated through comprehensive approaches. The enhanced nitrate conversion efficiency is mainly attributed to the synergistic effect between deliberately generated oxygen vacancies and Mo active sites, capturing O and N atoms of nitrate, respectively, thus promoting the adsorption of nitrate and cleavage of N–O bond. Furthermore, the H “repulsion” effect of Bi efficiently suppresses hydrogenation reaction, resulting in greatly enhanced N2 selectivity.

Graphical Abstract

The generation of oxygen vacancy leads to the cleavage of N-O bond in NO3-, which also enhances the adsorption of nitrate. The specific adsorption of nitrogen on active Mo site is enhanced, and the repulsion of element Bi to protons enhances the selectivity of N2 in the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anjana SU, Iqbal M (2007) Agron. Sustainable Dev 27:45–57

    CAS  Google Scholar 

  2. Garcia-Segura S, Lanzarini-Lopes M, Hristovski K et al (2018) Appl Catal, B 236:546–568

    Article  CAS  Google Scholar 

  3. Saravanakumar D, Song J, Lee S et al (2017) Chemsuschem 10:3999–4003

    Article  CAS  Google Scholar 

  4. Ensie B, Samad S (2014) Desalination 347:1–9

    Article  CAS  Google Scholar 

  5. Su JF, Ruzybayev I, Shah I et al (2016) Appl Catal, B 180:199–209

    Article  CAS  Google Scholar 

  6. Tałałaj IA, Biedka P, Bartkowska I (2019) Environ Chem Lett 17:1177–1193

    Article  Google Scholar 

  7. Liu C, Dermody D, Harris K et al (2017) ACS Comb Sci 19:422–436

    Article  CAS  Google Scholar 

  8. Sposob M, Bakke R, Dinamarca C (2017) Bioresour Technol 233:209–215

    Article  CAS  Google Scholar 

  9. Ma J, Yang Q, Wang S et al (2010) J Hazard Mater 175:518–523

    Article  CAS  Google Scholar 

  10. Fessenden RW, Meisel D, Camaioni DM (2000) J Am Chem Soc 122:3773–3774

    Article  CAS  Google Scholar 

  11. Bems B, Jentoft FC, Schlögl R (1999) Appl Catal, B 20:155–163

    Article  CAS  Google Scholar 

  12. Cook AR, Dimitrijevic N, Dreyfus BW et al (2001) J Phys Chem A 105:3658–3666

    Article  CAS  Google Scholar 

  13. Chen F, Yang Q, Wang Y et al (2017) Appl Catal, B 205:133–147

    Article  CAS  Google Scholar 

  14. Li H, Shang J, Ai Z et al (2015) J Am Chem Soc 137:6393–6399

    Article  CAS  Google Scholar 

  15. Di J, Zhao X, Lian C et al (2019) Nano Energy 61:54–59

    Article  CAS  Google Scholar 

  16. Guo Q, Zhou C, Ma Z et al (2016) Chem Soc Rev 45:3701–3730

    Article  CAS  Google Scholar 

  17. Li H, Li J, Ai Z et al (2018) Angew Chem Int Ed 57:122–138

    Article  CAS  Google Scholar 

  18. Serpone N (2006) J Phys Chem B 110:24287–24293

    Article  CAS  Google Scholar 

  19. Li H, Sun B, Xu Y et al (2018) J Colloid Interface Sci 531:664–671

    Article  CAS  Google Scholar 

  20. Dou S, Tao L, Wang R et al (2018) Adv Mater 30:1705850

    Article  Google Scholar 

  21. Zhao J, Chen Z (2017) J Am Chem Soc 139:12480–12487

    Article  CAS  Google Scholar 

  22. Geng J, Ji S, Xu H et al (2021) Inorg Chem Front 8:5209–5213

    Article  CAS  Google Scholar 

  23. Greeley J, Jaramillo TF, Bonde J et al (2006) Nat Mater 5:909–913

    Article  CAS  Google Scholar 

  24. Wu S, Xiong J, Sun J et al (2017) ACS Appl Mater Interfaces 9:16620–16626

    Article  CAS  Google Scholar 

  25. Zhang N, Jalil A, Wu D et al (2018) J Am Chem Soc 140:9434–9443

    Article  CAS  Google Scholar 

  26. Dai W, Long J, Yang L et al (2021) J Energy Chem 61:281–289

    Article  CAS  Google Scholar 

  27. Li Y, Go YK, Ooka H et al (2020) Angew Chem Int Ed 59:9744–9750

    Article  CAS  Google Scholar 

  28. Chen Y, Yang W, Gao S et al (2018) ACS Appl Nano Mater 1:3565–3578

    Article  CAS  Google Scholar 

  29. Kongmark C, Coulter R, Cristol S et al (2012) Cryst Growth Des 12:5994–6003

    Article  CAS  Google Scholar 

  30. Li G, Yang W, Gao S et al (2021) Chem Eng J 404:127115

    Article  CAS  Google Scholar 

  31. Loyalka SK, Riggs CA (1995) Appl Spectrosc 49:1107–1110

    Article  CAS  Google Scholar 

  32. Yandulov DV, Schrock RR (2003) Science 301:76–78

    Article  CAS  Google Scholar 

  33. Li H, Li W, Gu S et al (2017) J Mol Catal 433:301–312

    Article  CAS  Google Scholar 

  34. Liu G, Yang HG, Wang X et al (2009) J Phys Chem C 113:21784–21788

    Article  CAS  Google Scholar 

  35. Wang S, Ding X, Yang N et al (2020) Appl Catal B 265:118585

    Article  CAS  Google Scholar 

  36. He D, Li Y, Ooka H et al (2018) J Am Chem Soc 140:2012–2015

    Article  CAS  Google Scholar 

  37. Hao Y-C, Guo Y, Chen L-W et al (2019) Nat Catal 2:448–456

    Article  CAS  Google Scholar 

  38. Trasatti S (1972) J Electroanal Chem Interfacial Electrochem 39:163–184

    Article  CAS  Google Scholar 

  39. Marković NM, Ross PN (2002) Surf Sci Rep 45:117–229

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 52101279), Natural Science Foundation of Hunan Provience (No. 2020JJ5688), Science Research Initiation Fund of Central South University (No. 202045012), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University.

Author information

Authors and Affiliations

Authors

Contributions

Y K: Investigation, Methodology, Writing—original draft. Z Z: Formal analysis. X W: Data Curation. X C: Writing—review & editing. S J: Resources, Conceptualization& supervision.

Corresponding authors

Correspondence to Shengming Jin or Xinghua Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3001 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Zhao, Z., Wu, X. et al. Plasma Engraved Bi2MoO6 for Enhanced Photocatalytic Nitrate Reduction Reaction. Catal Lett 153, 432–440 (2023). https://doi.org/10.1007/s10562-022-03987-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03987-4

Keywords

Navigation