Skip to main content

Advertisement

Log in

A Facile In Situ Hydrothermal Etching Method to CaTiO3/TiO2 Heterostructure for Efficient Photocatalytic N2 Reduction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Photocatalytic nitrogen fixation for the synthesis of ammonia is an important and attractive method to N2 turning into other compounds. The development of compact heterostructure photocatalysts is crucial for efficient solar energy conversion. Here, composite was obtained by simple in situ hydrothermal etching of the reduced TiO2 nanospheres with saturated calcium hydroxide solution. CaTiO3/TiO2 heterostructure composite can adsorb, activate and convert N2 to ammonia by using its close contact interface. Under simulated sunlight irradiation, CaTiO3/TiO2 composite greatly enhanced the photocatalytic N2 reduction performance. Compared with pure CaTiO3, the efficiency of 0.3-T–C heterostructure in synthesizing NH3 under visible light was 1.88 times higher than that of pure CaTiO3 (59.17 μmol·g−1·h−1) The excellent photocatalytic performance of CaTiO3/TiO2 is attributed to the close structure between CaTiO3 and TiO2, which promotes the separation of photogenerated charges and provides more active sites. This study provides a basic idea for the rational design of highly efficient heterogeneous photocatalysts to achieve excellent photocatalytic performance for N2 reduction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cao SW, Low JX, Yu JG, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176

    Article  CAS  PubMed  Google Scholar 

  2. Huang HW, Tu SC, Zeng C (2017) Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew Chem Int Ed 56:11860–11864

    Article  CAS  Google Scholar 

  3. Serra A, Zhang Y, Sepulveda B (2020) Highly reduced ecotoxicity of ZnO-based micro/nanostructures on aquatic biota: Influence of architecture, chemical composition, fixation, and photocatalytic efficiency. Water Res 169:1–12

    Article  Google Scholar 

  4. Tian YL, Chang BB, Lu JL (2013) Hydrothermal synthesis of graphitic carbon nitride–Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. ACS Appl Mater Interfaces 5:7079–7085

    Article  CAS  PubMed  Google Scholar 

  5. Xiao R, Zhao CX, Zou ZY (2020) In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl Catal B 268:1–11

    Article  Google Scholar 

  6. Zhao YX, Zhao YF, Shi R (2019) Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv Mater 31:9

    Google Scholar 

  7. Guo CX, Ran JR, Vasileff A, Qiao SZ (2018) Rational design of electrocatalysts and photo(electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ Sci 11:45–56

    Article  CAS  Google Scholar 

  8. Li LQ, Tang C, Cui XY (2021) Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction. Angew Chem Int Ed 60:14131–14137

    Article  CAS  Google Scholar 

  9. Lin JJ, Hu JS, Qiu CW (2019) In situ hydrothermal etching fabrication of CaTiO3 on TiO2 nanosheets with heterojunction effects to enhance CO2 adsorption and photocatalytic reduction. Catal Sci Technol 9:336–346

    Article  CAS  Google Scholar 

  10. Wang HL, Zhang LS, Chen ZG (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Guan R, Zhang J (2020) Preparation and photocatalytic performance of dumbbell Ag2CO3–ZnO heterojunctions. ACS Omega 5:570–577

    Article  CAS  PubMed  Google Scholar 

  12. Wang SB, Han X, Zhang YH (2021) Inside-and-out semiconductor engineering for CO2 photoreduction: from recent advances to new trends. Small Struct 2:2000061

    Article  CAS  Google Scholar 

  13. Chen T, Liu L, Hu C (2021) Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chin J Catal 42:1413–1438

    Article  CAS  Google Scholar 

  14. Chen DJ, Cheng YL, Zhou N (2020) Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J Clean Prod 268:1–14

    Google Scholar 

  15. Al-Mamun MR, Kader S, Islam MS, Khan MZH (2019) Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review. J Environ Chem Eng 7:1–10

    Article  Google Scholar 

  16. Ge H, Xu F, Cheng B, Yu J, Ho W (2019) S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst. ChemCatChem 11:6301–6309

    Article  CAS  Google Scholar 

  17. Guo Q, Zhou C, Ma Z, Yang X (2019) Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 31:1–12

    Google Scholar 

  18. Liu L, Huang H, Chen Z (2021) Synergistic polarization engineering on bulk and surface for boosting CO2 photoreduction. Angew Chem 60:18303–18308

    Article  CAS  Google Scholar 

  19. Chen F, Ma ZY, Ye LQ (2020) Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv Mater 32:1908350

    Article  CAS  Google Scholar 

  20. Meng A, Zhang L, Cheng B, Yu J (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31:1807660

    Article  Google Scholar 

  21. Yu X, Zhang J, Zhang J (2019) Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: analysis of degradation pathways and intermediates. Chem Eng J 374:316–327

    Article  CAS  Google Scholar 

  22. Cai J, Cao A, Huang J (2020) Understanding oxygen vacancies in disorder-engineered surface and subsurface of CaTiO3 nanosheets on photocatalytic hydrogen evolution. Appl Catal B 267:1–10

    Google Scholar 

  23. Yang S, Yao J, Quan Y et al (2020) Monitoring the charge-transfer process in a Nd-doped semiconductor based on photoluminescence and SERS technology. Light Sci Appl 9:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ahmed I, Shi L, Pasanen H et al (2021) There is plenty of room at the top: generation of hot charge carriers and their applications in perovskite and other semiconductor-based optoelectronic devices. Light Sci Appl 10:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang E, Song N, Che G (2020) Construction of a Z-scheme MoS2/CaTiO3 heterostructure by the morphology-controlled strategy towards enhancing photocatalytic activity. Chem Eng J 399:1–10

    Article  Google Scholar 

  26. Kara GK, Moshari M, Rabbani M, Rahimi R (2021) A novel and green heterogeneous photocatalytic system (Ca0.01Fe2.99O4/CaTiO3 nanocomposite): protocol synthesis, characterization, and study of photo-decoloration activity. Mater Chem Phys 259:1–9

    Article  Google Scholar 

  27. Han J, He M, Yang M et al (2020) Light-modulated vertical heterojunction phototransistors with distinct logical photocurrents. Light Sci Appl 9:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Solis RR, Bedia J, Rodriguez JJ, Belver C (2021) A review on alkaline earth metal titanates for applications in photocatalytic water purification. Chem Eng J 409:1–10

    Article  Google Scholar 

  29. Chen X, He X, Yang X, Wu Z, Li Y (2020) Construction of novel 2D/1D g-C3N4/CaTiO3 heterojunction with face-to-face contact for boosting photodegradation of triphenylmethane dyes under simulated sunlight. J Taiwan Inst Chem Eng 107:98–109

    Article  CAS  Google Scholar 

  30. Liu G, Yang B, Chen H (2019) In situ surface modification of TiO2 by CaTiO3 to improve the UV stability and power conversion efficiency of perovskite solar cells. Appl Phys Lett 115:1–12

    CAS  Google Scholar 

  31. Liu Y, Pan J, Li H (2019) The 2D petaloid MoS2 lamellas modified cubic CaTiO3 nanocomposites towards photocatalytic hydrogen production enhancement. J Alloys Compd 811:1–11

    Google Scholar 

  32. Long J, Chang H, Gu Q (2014) Gold-plasmon enhanced solar-to-hydrogen conversion on the 001 facets of anatase TiO2 nanosheets. Energy Environ Sci 7:973–977

    Article  CAS  Google Scholar 

  33. Hu Y, Qian H, Liu Y (2011) A microwave-assisted rapid route to synthesize ZnO/ZnS core–shell nanostructures via controllable surface sulfidation of ZnO nanorods. CrystEngComm 13:3438–3443

    Article  CAS  Google Scholar 

  34. Ehsan MA, Naeem R, McKee V (2019) Fabrication of photoactive CaTiO3–TiO2 composite thin film electrodes via facile single step aerosol assisted chemical vapor deposition route. J Mater Sci Mater Electron 30:1411–1424

    Article  CAS  Google Scholar 

  35. Goyal D, Kumar S, Shukla A, Kumar R (2016) Origin of multiple band gap values in single width nanoribbons. Sci Rep 6:1–12

    Article  Google Scholar 

  36. Lettier S, Gargiulo V, Pallotti DK (2018) Evidencing opposite charge-transfer processes at TiO2/graphene-related materials interface through a combined EPR, photoluminescence and photocatalysis assessment. Catal Today 315:19–30

    Article  Google Scholar 

  37. Yuan YJ, Wang P, Li ZJ (2019) The role of bandgap and interface in enhancing photocatalytic H-2 generation activity of 2D–2D black phosphorus/MoS2 photocatalyst. Appl Catal B 242:1–8

    Article  CAS  Google Scholar 

  38. Song MY, Wang LJ, Li JX (2021) Defect density modulation of La2TiO5: an effective method to suppress electron–hole recombination and improve photocatalytic nitrogen fixation. J Colloid Interface Sci 602:748–755

    Article  CAS  PubMed  Google Scholar 

  39. Jang JS, Borse PH, Lee JS (2011) Photocatalytic hydrogen production in water–methanol mixture over iron-doped CaTiO3. Bull Korean Chem Soc 32:95–99

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 61308095, 21801092 and 21878119)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dewu Sun or Hongju Zhai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Song, M., Sun, D. et al. A Facile In Situ Hydrothermal Etching Method to CaTiO3/TiO2 Heterostructure for Efficient Photocatalytic N2 Reduction. Catal Lett 152, 1990–1998 (2022). https://doi.org/10.1007/s10562-021-03813-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03813-3

Keywords

Navigation