Skip to main content
Log in

The Direct Synthesis of Hydrogen Peroxide Over Supported Pd-Based Catalysts: An Investigation into the Role of the Support and Secondary Metal Modifiers

  • Published:
Catalysis Letters Aims and scope Submit manuscript

A Correction to this article was published on 12 April 2022

This article has been updated

Abstract

The direct synthesis of H2O2 from molecular H2 and O2 over Pd-based catalysts, prepared via an industrially relevant, excess chloride co-impregnation procedure is investigated. Initial studies into the well-established PdAu system demonstrated the key role of Pd: Au ratio on catalytic activity, under conditions that have previously been found to be optimal for H2O2 formation. Further investigations using the optimal Pd: Au ratio identified the role of the catalyst support in controlling particle size and Pd oxidation state and thus catalytic performance. Subsequently, with an aim to replace Au with cheaper alternatives, the alloying of Pd with more abundant secondary metals is explored.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article and the corresponding supplementary information.

Change history

References

  1. Lewis RJ, Hutchings GJ (2019) Recent advances in the direct synthesis of H2O2. ChemCatChem 11:298–308

    Article  CAS  Google Scholar 

  2. Li H, Zheng B, Pan Z, Zong B, Qiao M (2018) Advances in the slurry reactor technology of the anthraquinone process for H2O2 production. Front Chem Sci Eng 12:124–131

    Article  CAS  Google Scholar 

  3. Wegner P (2003). Hydrogen peroxide stabilizer and resulting product and applications US20050065052A15

  4. Gao G, Tain Y, Gong X, Pan Z, Yong K, Zong B (2020) Advances in the production technology of hydrogen peroxide. Chin J. Catal 41:1039–1047

    Article  CAS  Google Scholar 

  5. Edwards JK, Freakley SJ, Lewis RJ, Pritchard JC, Hutchings GJ (2015) Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catal Today 248:3–9

    Article  CAS  Google Scholar 

  6. Crombie CM, Lewis RJ, Taylor RL, Morgan DJ, Davies TE, Folli A, Murphy DM, Edwards JK, Qi J, Jiang H, Kiely CJ, Liu X, Skjøth-Rasmussen MS, Hutchings GJ (2021) Enhanced selective oxidation of Benzyl alcohol via In Situ H2O2 production over supported Pd-based catalysts. ACS Catal 11:2701–2714

    Article  CAS  Google Scholar 

  7. Crombie CM, Lewis RJ, Kovačič D, Morgan DJ, Slater TJA, Davies TE, Edwards JK, Skjøth-Rasmussen MS, Hutchings GJ (2021) The selective oxidation of cyclohexane via In-situ H2O2 production over supported Pd-based catalysts. Catal Lett 151:2762–2774

    Article  CAS  Google Scholar 

  8. Crombie CM, Lewis RJ, Kovačič D, Morgan DJ, Davies TE, Edwards JK, Skjøth-Rasmussen MS, Hutchings GJ (2021) The influence of reaction conditions on the oxidation of cyclohexane via the in-situ production of H2O2. Catal Lett 151:164–171

    Article  CAS  Google Scholar 

  9. Jin Z, Wang L, Zuidema E, Mondal K, Zhang M, Zhang J, Wang C, Meng X, Yang H, Mesters C, Xiao F (2020) Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367:193–197

    Article  CAS  Google Scholar 

  10. Santos A, Lewis RJ, Morgan DJ, Davies TE, Hampton E, Gaskin P, Hutchings GJ (2021) The degradation of phenol via in situ H2O2 production over supported Pd-based catalysts. Catal Sci Technol 11:7866–7874

    Article  CAS  Google Scholar 

  11. Wilson NM, Priyadarshini P, Kunz S, Flaherty DW (2018) Direct synthesis of H2O2 on Pd and AuxPd1 clusters: understanding the effects of alloying Pd with Au. J Catal 357:163–175

    Article  Google Scholar 

  12. Li J, Ishihara T, Yoshizawa K (2011) Theoretical revisit of the direct synthesis of H2O2 on Pd and Au@Pd surfaces: a comprehensive mechanistic study. J Phys Chem C 115:25359–25367

    Article  CAS  Google Scholar 

  13. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936

    Article  Google Scholar 

  14. Staykov A, Kamachi T, Ishihara T, Yoshizawa K (2008) Theoretical study of the direct synthesis of H2O2 on Pd and Pd/Au surfaces. J Phys Chem C 112:19501–19505

    Article  CAS  Google Scholar 

  15. Edwards JK, Solsona B, Ntainjua EN, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2009) Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323:1037–1041

    Article  CAS  Google Scholar 

  16. Choudhary V, Samanta C (2006) Role of chloride or bromide anions and protons for promoting the selective oxidation of H2 by O2 to H2O2 over supported Pd catalysts in an aqueous medium. J Catal 238:28–38

    Article  CAS  Google Scholar 

  17. Choudhary VR, Samanta C, Jana P (2007) Hydrogenation of hydrogen peroxide over palladium/carbon in aqueous acidic medium containing different halide anions under static/flowing hydrogen. Ind. Eng. Chem. Res. 46:3237–3242

    Article  CAS  Google Scholar 

  18. Lewis RJ, Ueura K, Fukuta Y, Freakley SJ, Kang L, Wang R, He Q, Edwards JK, Morgan DJ, Yamamoto Y, Hutchings GJ (2019) The direct synthesis of H2O2 using TS-1 supported catalysts. ChemCatChem 11:1673–1680

    Article  CAS  Google Scholar 

  19. Pritchard JC, He Q, Ntainjua EN, Piccinini M, Edwards JK, Herzing AA, Carley AF, Moulijn JA, Kiely CJ, Hutchings GJ (2010) The effect of catalyst preparation method on the performance of supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chem 12:915–921

    Article  CAS  Google Scholar 

  20. Hutchings GJ, Kiely CJ (2013) Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition. Acc Chem Res 46:1759–1772

    Article  CAS  Google Scholar 

  21. Edwards JK, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2008) Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au–Pd catalysts. Faraday Discuss 138:225–239

    Article  CAS  Google Scholar 

  22. Herzing AA, Watanabe M, Edwards JK, Conte M, Tang Z, Hutchings GJ, Kiely CJ (2008) Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discuss 138:337–351

    Article  CAS  Google Scholar 

  23. Sankar M, He Q, Morad M, Pritchard J, Freakley SJ, Edwards JK, Taylor SH, Morgan DJ, Carley AF, Knight DW, Kiely CJ, Hutchings GJ (2012) Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. ACS Nano 6:6600–6613

    Article  CAS  Google Scholar 

  24. Brehm J, Lewis RJ, Morgan DJ, Davies TE, Hutchings GJ (2021) The Direct synthesis of hydrogen peroxide over AuPd nanoparticles: an investigation into metal loading. Catal Lett 152:254–262

    Article  Google Scholar 

  25. Ntainjua EN, Edwards JK, Carley AF, Lopez-Sanchez JA, Moulijn JA, Herzing AA, Kiely CJ, Hutchings GJ (2008) The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chem 10:1162–1169

    Article  Google Scholar 

  26. Freakley SJ, He Q, Harrhy JH, Lu L, Crole DA, Morgan DJ, Ntainjua EN, Edwards JK, Carley AF, Borisevich AY, Kiely CJ, Hutchings GJ (2016) Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351:965–968

    Article  CAS  Google Scholar 

  27. Wang Y, Pan H, Lin Q, Shi Y, Zhang J (2020) Synthesis of Pd-M@HCS(M = Co, Ni, Cu) bimetallic catalysts and their catalytic performance for direct synthesis of H2O2. Catalysts 10:303

    Article  Google Scholar 

  28. Crole DA, Underhill R, Edwards JK, Shaw G, Freakley SJ, Hutchings GJ, Lewis RJ (2020) The direct synthesis of hydrogen peroxide from H2 and O2 using PdNi/TiO2 catalysts. Phil Trans R Soc 378:20200062

    Article  CAS  Google Scholar 

  29. Ding D, Xu X, Tian P, Liu X, Xu J, Han Y (2018) Promotional effects of Sb on Pd-based catalysts for the direct synthesis of hydrogen peroxide at ambient pressure. Chin J Catal 39:673–681

    Article  CAS  Google Scholar 

  30. Wang S, Lewis RJ, Doronkin DE, Morgan DJ, Grunwaldt J, Hutchings GJ, Behrens S (2020) The direct synthesis of hydrogen peroxide from H2 and O2 using Pd-Ga and Pd-In catalysts. Catal Sci Technol 10:1925–1932

    Article  CAS  Google Scholar 

  31. Han G, Xiao X, Hong J, Lee K, Park S, Ahn J, Lee K, Yu T (2020) Tailored palladium-platinum nanoconcave cubes as high performance catalysts for the direct synthesis of hydrogen peroxide. ACS Appl Mater Interfaces 12:6328–6335

    Article  CAS  Google Scholar 

  32. Doronkin DE, Wang S, Sharapa DI, Deschner BJ, Sheppard TL, Zimina A, Studt F, Dittmeyer R, Behrens S, Grunwaldt J (2020) Dynamic structural changes of supported Pd, PdSn, and PdIn nanoparticles during continuous flow high pressure direct H2O2 synthesis. Catal. Sci. Technol. 10:4726–4742

    Article  CAS  Google Scholar 

  33. Wilson NM, Schröder J, Priyadarshini P, Bregante DT, Kunz S, Flaherty DW (2018) Direct synthesis of H2O2 on PdZn nanoparticles: The impact of electronic modifications and heterogeneity of active sites. J Catal 368:261–274

    Article  CAS  Google Scholar 

  34. Wang S, Gao K, Li W, Zhang J (2017) Effect of Zn addition on the direct synthesis of hydrogen peroxide over supported palladium catalysts. Appl Catal A 531:89–95

    Article  CAS  Google Scholar 

  35. Santos A, Lewis RJ, Malta G, Howe AGR, Morgan DJ, Hampton E, Gaskin P, Hutchings GJ (2019) Direct synthesis of hydrogen peroxide over Au–Pd supported nanoparticles under ambient conditions. Ind Eng Chem Res 58:12623–12631

    Article  CAS  Google Scholar 

  36. Fairley N, Fernandez V, Richard-Plouet M, Guillot-Deudon C, Walton J, Smith E, Flahaut D, Greiner M, Biesinger M, Tougaard S, Morgan D, Baltrusaitis J (2021) Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. 5:100112

    Article  Google Scholar 

  37. Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8:129–137

    Article  CAS  Google Scholar 

  38. Williams C, Carter JH, Dummer NF, Chow YK, Morgan DJ, Yacob S, Serna P, Willock DJ, Meyer RJ, Taylor SH, Hutchings GJ (2018) Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. ACS Catal 8:2567–2576

    Article  CAS  Google Scholar 

  39. Ouyang L, Tian P, Da G, Xu X, Ao C, Chen T, Si R, Xu J, Han Y (2015) The origin of active sites for direct synthesis of H2O2 on Pd/TiO2 catalysts: interfaces of Pd and PdO domains. J Catal 321:70–80

    Article  CAS  Google Scholar 

  40. Gong X, Lewis RJ, Zhou S, Morgan DJ, Davies TE, Liu X, Kiely CJ, Zong B, Hutchings GJ (2020) Enhanced catalyst selectivity in the direct synthesis of H2O2 through Pt incorporation into TiO2 supported AuPd catalysts. Catal Sci Technol 10:4635–4644

    Article  CAS  Google Scholar 

  41. Edwards JK, Thomas A, Solsona BE, Landon P, Carley AF, Hutchings GJ (2007) Comparison of supports for the direct synthesis of hydrogen peroxide from H2 and O2 using Au-Pd catalysts. Catal Today 122:397–402

    Article  CAS  Google Scholar 

  42. Edwards JK, Parker SF, Pritchard J, Piccinini M, Freakley SJ, He Q, Carley AF, Kiely CJ, Hutchings GJ (2013) Effect of acid pre-treatment on AuPd/SiO2 catalysts for the direct synthesis of hydrogen peroxide. Catal Sci Technol 3:812–818

    Article  CAS  Google Scholar 

  43. Edwards JK, Thomas A, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2008) Au–Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H2 and O2. Green Chem 10:388–394

    Article  CAS  Google Scholar 

  44. Lewis RJ, Edwards JK, Freakley SJ, Hutchings GJ (2017) Solid acid additives as recoverable promoters for the direct synthesis of hydrogen peroxide. Ind Eng Chem Res 56:13287–13293

    Article  CAS  Google Scholar 

  45. Solsona BE, Edwards JK, Landon P, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2006) Direct synthesis of hydrogen peroxide from H2 and O2 using Al2O3 supported Au-Pd catalysts. Chem Mater 18:2689–2695

    Article  CAS  Google Scholar 

  46. Blanco-Brieva G, Cano-Serrano E, Campos-Martin JM, Fierro JLG (2004) Direct synthesis of hydrogen peroxide solution with palladium-loaded sulfonic acid polystyrene resins. Chem. Commun. 10:1184–1185

    Article  Google Scholar 

  47. Gaikwad AG, Sansare SD, Choudhary VR (2002) Direct oxidation of hydrogen to hydrogen peroxide over Pd-containing fluorinated or sulfated Al2O3, ZrO2, CeO2, ThO2, Y2O3 and Ga2O3 catalysts in stirred slurry reactor at ambient conditions. J Mol Catal A: Chem 181:143–149

    Article  CAS  Google Scholar 

  48. Cao K, Yang H, Bai S, Xu Y, Yang C, Wu Y, Xie M, Cheng T, Shao Q, Huang X (2021) Efficient direct H2O2 synthesis enabled by PdPb nanorings via inhibiting the O-O bond cleavage in O2 and H2O2. ACS Catal 11:1106–1118

    Article  CAS  Google Scholar 

  49. Nazeri H, Chermahini AN, Mohammadbagheri Z, Prato M (2021) Direct production of hydrogen peroxide over bimetallic CoPd catalysts: Investigation of the effect of Co addition and calcination temperature. In Press, Green Energy Environ

    Google Scholar 

  50. Underhill R, Douthwaite M, Lewis RJ, Miedziak PJ, Armstrong RD, Morgan DJ, Freakley SJ, Davies TE, Folli A, Murphy DM, He Q, Akdim O, Edwards JK, Hutchings GJ (2021) Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. Res Chem Intermed 47:303–324

    Article  CAS  Google Scholar 

  51. Alotaibi F, Al-Mayman S, Alotaibi M, Edwards JK, Lewis RJ, Alotaibi R, Hutchings GJ (2019) Direct synthesis of hydrogen peroxide using Cs-containing Heteropolyacid-supported Palladium-copper catalysts. Catal Lett 149:998–1006

    Article  CAS  Google Scholar 

  52. Ab Rahim MH, Armstrong RD, Hammond C, Dimitratos N, Freakley SJ, Forde MM, Morgan DJ, Lalev G, Jenkins RL, Lopez-Sanchez JA, Taylor SH, Hutchings GJ (2016) Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts. Catal Sci Technol 6:3410–3418

    Article  CAS  Google Scholar 

  53. Joshi AM, Delgass WN, Thomson KT (2007) Investigation of Gold−Silver, Gold−Copper, and Gold−Palladium dimers and trimers for hydrogen peroxide formation from H2 and O2. J Phys Chem C 111:7384–7395

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Max Planck centre for Fundamental Heterogeneous Catalysis (FUNCAT) for financial support. XPS data collection was performed at the EPSRC National Facility for XPS (‘Harwell XPS), operated by Cardiff University and UCL, under contract No. PR16195.

Author information

Authors and Affiliations

Authors

Contributions

T.R. and R.J.L conducted catalytic synthesis, testing and data analysis. T.R, R.J.L and D.J.M conducted catalyst characterisation and corresponding data processing. R.J.L and G.J.H contributed to the design of the study and provided technical advice and result interpretation. R.J.L wrote the manuscript and Supplementary Information, with all authors commenting on and amending both documents. All authors discussed and contributed to the work.

Corresponding authors

Correspondence to Richard J. Lewis or Graham J. Hutchings.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richards, T., Lewis, R.J., Morgan, D.J. et al. The Direct Synthesis of Hydrogen Peroxide Over Supported Pd-Based Catalysts: An Investigation into the Role of the Support and Secondary Metal Modifiers. Catal Lett 153, 32–40 (2023). https://doi.org/10.1007/s10562-022-03967-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03967-8

Keywords

Navigation