Skip to main content

Advertisement

Log in

Dual Nature Cupper-Based Ionic Liquid-Assisted n-Butane Selective Oxidation with a Vanadium Phosphorus Oxide Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Recently, global warming is proving to be an increasing challenge for the sustainable human survival on planet earth. Worldwide, researchers are putting their efforts into controlling carbon emissions and have set the aim to achieve levels of overall carbon neutrality. Different industrial processes, especially oil refinery processes, release large amounts of low-carbon alkanes as gaseous byproducts directly into the air and pollute clean environments, which is one of the major reasons for sudden climate changes, ocean acidification, loss of biodiversity, and rising sea levels. The conversion of lighter alkanes, especially n-butane, into value-added chemicals can be beneficial for green economies and green environments. Presently, heterogeneous vanadium phosphorus oxide catalysts (VPOs) are considered potential candidates for n-butane selective oxidation toward maleic anhydride (MA). In this research, we developed a VPO catalyst with the assistance of copper-based ionic liquids (Cu-ILs), including [Bmim][OAc]–[Cu(OAc)2], [Bmim][Cl]–[CuCl], and [Bmim][Cl]–[CuCl2]. We observed significant improvement in the MA selectivity; meanwhile, the COx (CO and CO2) selectivity was decreased. Compared to the unpromoted catalyst (Blank-VPO), the Cu-IL-promoted catalyst, i.e., [Bmim][Cl]–[CuCl2]-VPO remarkably increased the MA selectivity (11%) and n-butane conversion (9.2%) and minimized the COx selectivity (11%). In addition to this the ratio of CO/CO2 has been reduced from 2.01 to 1.32. Therefore, this can be a helpful process for achieving carbon neutrality goals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Balbus JM, Boxall ABA, Fenske RA, McKone TE, Zeise L (2013) Environ Toxicol Chem 32:62–78

    Article  CAS  Google Scholar 

  2. Shakhashiri BZ, Bell JA (2014) Arab J Chem 7:5–9

    Article  CAS  Google Scholar 

  3. Ye Z, Qiu X, Chen J, Cammarano D, Ge Z, Ruane AC, Liu L, Tang L, Cao W, Liu B, Zhu Y (2020) Eur J Agron 120:126149

    Article  Google Scholar 

  4. Wan B, Tian L, Fu M, Zhang G (2021) J Clean Prod 316:128327

    Article  Google Scholar 

  5. Centi G, Trifiro F, Ebner JR, Franchetti VM (1988) Chem Rev 88:55–80

    Article  CAS  Google Scholar 

  6. Hodnett BK (1985) Catal Rev 27:373–424

    Article  Google Scholar 

  7. Faizan M, Li Y, Zhang R, Wang X, Song P, Liu R (2021) Chin J Chem Eng

  8. Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR (2021) Chem Rev 121:1232–1285

    Article  CAS  Google Scholar 

  9. Cheng M-J, Goddard WA (2013) J Am Chem Soc 135:4600–4603

    Article  CAS  Google Scholar 

  10. Schulz C, Pohl F, Driess M, Glaum R, Rosowski F, Frank B (2019) Ind Eng Chem Res 58:2492–2502

    Article  CAS  Google Scholar 

  11. Letters C (2020) C&EN Global Enterprise 98:14–14

    Google Scholar 

  12. Garside M (2019) www.statista.com

  13. Chen W, Duan X, Zhou X, Chen D (2021) EcoMat 3:e12095

    CAS  Google Scholar 

  14. Hutchings GJ (2009) J Mater Chem 19:1222–1235

    Article  CAS  Google Scholar 

  15. Dai F, Li Z, Chen X, He B, Liu R, Zhang S (2018) Catal Sci Technol 8:4515–4525

    Article  CAS  Google Scholar 

  16. Faizan M, Muhammad N, Niazi KUK, Hu Y, Wang Y, Wu Y, Sun H, Liu R, Dong W, Zhang W, Gao Z (2019) Materials 12:1643

    Article  CAS  Google Scholar 

  17. Faizan M, Niazi KUK, Nawaz H, Muhammad N, Li H, Dai F, Zhang R, Liu R, Zhang S (2021) Processes 9:1487

    Article  CAS  Google Scholar 

  18. Dong Y, Geske M, Korup O, Ellenfeld N, Rosowski F, Dobner C, Horn R (2018) Chem Eng J 350:799–811

    Article  CAS  Google Scholar 

  19. Müller M, Kutscherauer M, Böcklein S, Mestl G, Turek T (2021) Ind Eng Chem Res 60:218–229

    Article  Google Scholar 

  20. Li X, Teschner D, Streibel V, Lunkenbein T, Masliuk L, Fu T, Wang Y, Jones T, Seitz F, Girgsdies F, Rosowski F, Schlögl R, Trunschke A (2019) Chem Sci 10:2429–2443

    Article  CAS  Google Scholar 

  21. Goo K-Z, Yap Y-H, Lin K-S, Leong L-K (2020) J Chin Chem Soc 67:94–102

    Article  CAS  Google Scholar 

  22. Berenguer R, Guerrero-Pérez MO, Guzmán I, Rodríguez-Mirasol J, Cordero T (2017) ACS Omega 2:7739–7745

    Article  CAS  Google Scholar 

  23. Hamzehlouia S, Shabanian J, Latifi M, Chaouki J (2018) Chem Eng Sci 192:1177–1188

    Article  CAS  Google Scholar 

  24. Zhang Z, Guo J, Fu J, Zheng L, Zhu D, Xu Y, Song Y (2012) J Clust Sci 23:177–187

    Article  CAS  Google Scholar 

  25. Zazhigalov VA, Diyuk EA (2018) Theor Exp Chem 54:66–72

    Article  CAS  Google Scholar 

  26. Wang X, Xu L, Chen X, Ji W, Yan Q, Chen Y (2003) J Mol Catal A: Chem 206:261–268

    Article  CAS  Google Scholar 

  27. Overbeek RA, Warringa PA, Crombag MJD, Visser LM, van Dillen AJ, Geus JW (1996) Appl Catal A 135:209–230

    Article  CAS  Google Scholar 

  28. Ledoux MJ, Crouzet C, Pham-Huu C, Turines V, Kourtakis K, Mills PL, Lerou JJ (2001) J Catal 203:495–508

    Article  CAS  Google Scholar 

  29. Feng R-M, Yang X-J, Ji W-J, Chen Y, Au C-T (2007) J Catal 246:166–176

    Article  CAS  Google Scholar 

  30. Li X-K, Ji W-J, Zhao J, Zhang Z-B, Au C-T (2006) J Catal 238:232–241

    Article  CAS  Google Scholar 

  31. Muzart J (2006) Adv Synth Catal 348:275–295

    Article  CAS  Google Scholar 

  32. Dai C, Zhang J, Huang C, Lei Z (2017) Chem Rev 117:6929–6983

    Article  CAS  Google Scholar 

  33. Qiao Y, Ma W, Theyssen N, Chen C, Hou Z (2017) Chem Rev 117:6881–6928

    Article  CAS  Google Scholar 

  34. Rani P, Srivastava R (2016) New J Chem 40:7162–7170

    Article  CAS  Google Scholar 

  35. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Green Chem 3:156–164

    Article  CAS  Google Scholar 

  36. Liu F, Li L, Yu S, Lv Z, Ge X (2011) J Hazard Mater 189:249–254

    Article  CAS  Google Scholar 

  37. Dai F, Shi Y, Zhang T, Faizan M, Li Z, Zhang R, Liu R, Zhang S (2021) Catal Lett 151:255–266

    Article  CAS  Google Scholar 

  38. Zhang T, Zhang R, Zhang Y, Xie Z, Li Y, Dai F, Liu R (2021) ChemistrySelect 6:513–521

    Article  CAS  Google Scholar 

  39. Weng W, Al Otaibi R, Alhumaimess M, Conte M, Bartley JK, Dummer NF, Hutchings GJ, Kiely CJ (2011) J Mater Chem 21:16136–16146

    Article  CAS  Google Scholar 

  40. Shi Y, Dai F, Zhang T, He B, Zhang R, Liu R, Ren B (2020) ChemistrySelect 5:6907–6917

    Article  CAS  Google Scholar 

  41. Qingqing W, Gang X, Gaorong H (2006) Cryst Growth Des 6:1776–1780

    Article  Google Scholar 

  42. Guliants VV, Benziger JB, Sundaresan S (1995) Chem Mater 7:1485–1492

    Article  CAS  Google Scholar 

  43. He B, Li Y, Zhang T, Shi Y, Li K, Dai F, Zhang R, Liu R, Zhang S (2020) J Phys Chem B 124:3743–3753

    Article  CAS  Google Scholar 

  44. Okuhara T, Misono M (1993) Catal Today 16:61–67

    Article  CAS  Google Scholar 

  45. Schuurman Y, Gleaves JT (1994) Ind Eng Chem Res 33:2935–2941

    Article  CAS  Google Scholar 

  46. Dummer NF, Bartley JK, Hutchings GJ (2011) In: Gates BC, Knozinger H (eds) Advances in catalysis, vol 54, pp 189–247

  47. Hutchings GJ (2006) Science 313:1270–1273

    Article  Google Scholar 

  48. Li K, He B, Liu J, Zhang H, Zhang R, Liu R, Song Y-F, Zhang S (2019) Appl Catal A: Gen 582:117106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0206803), the Innovation Academy for Green Manufacture of Chinese Academy of Science (IAGM2020C17), Supported by the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (Grant. YLU-DNL Fund 2021016) and K. C. Wong Education Foundation (No. GJTD-2018-04).The authors are grateful for the assistance from teachers Guizhen Jin, Wu Hui, Wang Ling and Zhou Na of Analysis and Test Center, Institution of Process Engineering, Chinese Academy of Sciences, Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruixia Liu.

Ethics declarations

Competing interest

The authors declare that there are no competing financial interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faizan, M., Zhang, R. & Liu, R. Dual Nature Cupper-Based Ionic Liquid-Assisted n-Butane Selective Oxidation with a Vanadium Phosphorus Oxide Catalyst. Catal Lett 153, 271–284 (2023). https://doi.org/10.1007/s10562-022-03962-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03962-z

Keywords

Navigation