Skip to main content
Log in

Vanadium Substitution as an Effective Way to Enhance the Redox Ability of Tungstophosphoric Acid and for Application of NH3-SCR

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel TiO2-supported vanadium-substituted tungstophosphoric acid (PW11V/TiO2) catalyst was designed and applied for selective catalytic reduction of NOx by NH3. Compared with the commercial tungstophosphoric acid (PW12/TiO2), PW11V/TiO2 displayed a nearly 90% activity improvement at 300 °C. In addition, the favorable resistance and stability to SO2 were also obtained over PW11V/TiO2 catalyst. Phase analysis and spectroscopy results indicated the vanadium was successfully incorporated into the molecular structure of PW12, and the Keggin framework still keep stable over the TiO2 support. H2-TPR test proved the incorporation of vanadium promoted the redox ability of PW11V. The present study provides us an effective way to improve the performance of catalytic removal of NOx through tungstophosphoric acid catalyst.

Graphic Abstract

After introduction of V species, the obtained PW11V/TiO2 catalyst show better NH3-SCR performance and N2 selectivity than PW12/TiO2 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chossière GP, Malina R, Ashok A, Dedoussi IC, Eastham SD, Speth RL et al (2017) Public health impacts of excess NOx emissions from volkswagen diesel passenger vehicles in Germany. Environ Res Lett 12(3):034014

    Article  Google Scholar 

  2. Yan L, Wang F, Wang P, Impeng S, Liu X, Han L et al (2020) Unraveling the unexpected offset effects of Cd and SO2 deactivation over CeO2-WO3/TiO2 catalysts for NOx reduction. Environ Sci Technol 54(12):7697–7705

    Article  CAS  Google Scholar 

  3. Yan L, Ji Y, Wang P, Feng C, Han L, Li H et al (2020) Alkali and phosphorus resistant zeolite-like catalysts for NOx reduction by NH3. Environ Sci Technol 54(14):9132–9141

    Article  CAS  Google Scholar 

  4. Busca G, Lietti L, Ramis G, Berti F (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts : a review. Appl Catal B 18(1–2):1–36

    Article  CAS  Google Scholar 

  5. Yan T, Liu Q, Wang S, Xu G, Wu M, Chen J et al (2020) Promoter rather than inhibitor: phosphorus incorporation accelerates the activity of V2O5–WO3/TiO2 catalyst for selective catalytic reduction of NOx by NH3. ACS Catal 10(4):2747–2753

    Article  Google Scholar 

  6. Topsøe N-Y (1994) Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy. Science 265(5176):1217

    Article  Google Scholar 

  7. Lietti L, Alemany JL, Forzatti P, Busca G, Ramis G, Giamello E et al (1996) Reactivity of V2O5-WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia. Catal Today 29(1):143–148

    Article  CAS  Google Scholar 

  8. Han L, Cai S, Gao M, Hasegawa JY, Wang P, Zhang J et al (2019) Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chem Rev 119(19):10916–10976

    Article  CAS  Google Scholar 

  9. Khan MN, Han L, Wang P, Zhang D (2020) Tailored alkali resistance of DeNOx catalysts by improving redox properties and activating adsorbed reactive species. Iscience 23(6):101173

    Article  CAS  Google Scholar 

  10. Timofeeva MN (2003) Acid catalysis by heteropoly acids. Appl Catal A 256(1):19–35

    Article  CAS  Google Scholar 

  11. Okuhara T, Mizuno N, Misono M (1996) Catalytic chemistry of heteropoly compounds. In: Eley DD, Haag WO, Gates B (eds) Advances in catalysis, 41st edn. Academic Press, San Siego, pp 113–252

    Google Scholar 

  12. Geng Y, Jin K, Mei J, Su G, Ma L, Yang S (2020) CeO2 grafted with different heteropoly acids for selective catalytic reduction of NOx with NH3. J Hazard Mater 382:121032

    Article  CAS  Google Scholar 

  13. Putluru SSR, Jensen AD, Riisager A, Fehrmann R (2011) Heteropoly acid promoted V2O5/TiO2 catalysts for NO abatement with ammonia in alkali containing flue gases. Catal Sci Technol 1(4):631

    Article  CAS  Google Scholar 

  14. Putluru SSR, Mossin S, Riisager A, Fehrmann R (2011) Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia. Catal Today 176(1):292–297

    Article  CAS  Google Scholar 

  15. Zhang Q, Song Z, Ning P, Liu X, Li H, Gu J (2015) Novel promoting effect of acid modification on selective catalytic reduction of NO with ammonia over CeO2 catalyst. Catal Commun 59:170–174

    Article  CAS  Google Scholar 

  16. Wu R, Zhang N, Liu X, Li L, Song L, Qiu W et al (2018) The keggin structure: an important factor in governing NH3–SCR activity over the V2O5–MoO3/TiO2 catalyst. Catal Lett 148(4):1228–1235

    Article  CAS  Google Scholar 

  17. Ke Y, Huang W, Li S, Liao Y, Li J, Qu Z et al (2019) Surface acidity enhancement of CeO2 catalysts via modification with a heteropoly acid for the selective catalytic reduction of NO with ammonia. Catal Sci Technol 9(20):5774–5785

    Article  CAS  Google Scholar 

  18. Mizuno N, Misono M (1997) Heteropolyacid catalysts. Curr Opin Solid State Mater Sci 2(1):84–89

    Article  CAS  Google Scholar 

  19. Geng Y, Xiong S, Li B, Liao Y, Xiao X, Yang S (2018) H3PW12O40 grafted on CeO2: a high-performance catalyst for the selective catalytic reduction of NOx with NH3. Ind Eng Chem Res 57(3):856–866

    Article  CAS  Google Scholar 

  20. Ren Z, Teng Y, Zhao L, Wang R (2017) Keggin-tungstophosphoric acid decorated Fe2O3 nanoring as a new catalyst for selective catalytic reduction of NOx with ammonia. Catal Today 297:36–45

    Article  CAS  Google Scholar 

  21. Putluru SSR, Schill L, Godiksen A, Poreddy R, Mossin S, Jensen AD et al (2016) Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B 183:282–290

    Article  CAS  Google Scholar 

  22. Tsigdinos GA, Hallada CJ (1968) Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparation and characterization. Inorg Chem 7(3):437–441

    Article  CAS  Google Scholar 

  23. Venkateswara Rao KT, Haribabu B, Sai Prasad PS, Lingaiah N (2013) Vapor-phase selective aerobic oxidation of benzylamine to dibenzylimine over silica-supported vanadium-substituted tungstophosphoric acid catalyst. Green Chem 15(3):837

    Article  CAS  Google Scholar 

  24. Tang S, Wu W, Fu Z, Zou S, Liu Y, Zhao H et al (2015) Vanadium-substituted tungstophosphoric acids as efficient catalysts for visible-light-driven oxygenation of cyclohexane by dioxygen. ChemCatChem 7(17):2637–2645

    Article  CAS  Google Scholar 

  25. Mioč UB, Dimitrijević RŽ, Davidović M, Nedić ZP, Mitrović MM, Colomban P (1994) Thermally induced phase transformations of 12-tungstophosphoric acid 29-hydrate: synthesis and characterization of PW8O26-type bronzes. J Mater Sci 29(14):3705–3718

    Article  Google Scholar 

  26. Ladera RM, Ojeda M, Fierro JLG, Rojas S (2015) TiO2-supported heteropoly acid catalysts for dehydration of methanol to dimethyl ether: relevance of dispersion and support interaction. Catal Sci Technol 5(1):484–491

    Article  CAS  Google Scholar 

  27. Lai J-K, Wachs IE (2018) A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5–WO3/TiO2 catalysts. ACS Catal 8(7):6537–6551

    Article  CAS  Google Scholar 

  28. Amiridis MD, Wachs IE, Deo G, Jehng JM, Kim DS (1996) Reactivity of V2O5 catalysts for the selective catalytic reduction of NO by NH3: influence of vanadia loading, H2O, and SO2. J Catal 161(1):247–253

    Article  CAS  Google Scholar 

  29. Damyanova S, Fierro JLG (1998) Structural features and thermal stability of titania-supported 12-molybdophosphoric heteropoly compounds. Chem Mater 10(3):871–879

    Article  CAS  Google Scholar 

  30. Predoeva A, Damyanova S, Gaigneaux EM, Petrov L (2007) The surface and catalytic properties of titania-supported mixed PMoV heteropoly compounds for total oxidation of chlorobenzene. Appl Catal A 319:14–24

    Article  CAS  Google Scholar 

  31. Xu Y, Wu X, Lin Q, Hu J, Ran R, Weng D (2019) SO2 promoted V2O5-MoO3/TiO2 catalyst for NH3-SCR of NO at low temperatures. Appl Catal A 570:42–50

    Article  CAS  Google Scholar 

  32. Hodnett BK, Moffat JB (1985) Study of heteropoly compounds with the keggin structure by temperature-programmed reduction and H-D exchange. J Catal 91(1):93–103

    Article  CAS  Google Scholar 

  33. Parida KM, Mallick S (2009) Phosphotungstic acid promoted zirconia–alumina mixed oxides: a stable and reusable catalysts for epoxidation of trans-stilbene. Catal Commun 11(1):51–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21876093, 11675098, 11975147, 12075148), and the National Key Research, Development Program (2017YFC0210700 and 2018YFC0213400) and by Program for Changjiang Scholars. The Innovative Research Team in University No. IRT_17R71 was also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wang, S., Xu, G. et al. Vanadium Substitution as an Effective Way to Enhance the Redox Ability of Tungstophosphoric Acid and for Application of NH3-SCR. Catal Lett 151, 2250–2256 (2021). https://doi.org/10.1007/s10562-020-03467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03467-7

Keywords

Navigation