Skip to main content
Log in

An Dinuclear Iron (III)-Based Homogeneous Catalytic System: Robust, Efficient and Highly Selective CO2-to-CO Conversion under Visible Light

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel dinuclear Fe (III) complex Fe2O(NO3)4(dmbpy)2]·H2O (Fe2-DMBPY) with 4,4′-dimethyl-2,2′-bipyridine (dmbpy) as ligand are reported on the photocatalytic reduction of CO2, and another easy-to-prepare dinuclear Fe (III) complex Fe2O(NO3)4(bpy)2] (Fe2-BPY) with 2,2′-bipyridine (bpy) as ligand is used to make a comparison. The catalytic activity of Fe2-DMBPY is greater than that reported previously, in addition to favorable stability and selectivity. Based on the two intermediates that derived from high-resolution mass spectrometry, density functional theory calculations well confirmed these intermediates can be stable during the experimental process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Alsabeh PG, Rosas-Hernández A, Barsch E et al (2016) Iron-catalyzed photoreduction of carbon dioxide to synthesis gas. Catal Sci Technol 6(10):3623–3630

    Article  CAS  Google Scholar 

  2. Costentin C, Robert M, Save’ant JM (2013) Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev 42(6):2423–2436

    Article  CAS  Google Scholar 

  3. Rosas-Hernández A, Steinlechner C, Junge H, Beller M (2017) Earth-abundant photocatalytic systems for the visible-light-driven reduction of CO2 to CO. Green Chem 19(10):2356–2360

    Article  Google Scholar 

  4. Grodkowski J, Neta P (2000) Ferrous Ions as catalysts for photochemical reduction of CO2 in homogeneous solutions. J Phys Chem A 104:4475–4479

    Article  CAS  Google Scholar 

  5. Kuehnel MF, Orchard KL, Dalle KE, Reisner E (2017) Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J Am Chem Soc 139(21):7217–7223

    Article  CAS  Google Scholar 

  6. Gao C, Meng Q, Zhao K et al (2016) Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv Mater 28:6485–6490

    Article  CAS  Google Scholar 

  7. Jiang S, Liu J, Zhao K, Al-Mamun M, Lowe SE, Zhang W, Zhong YL, Chen J, Wang Y, Wang D, Zhao HJ (2021) Ru(bpy)32+-sensitized 001 facets LiCoO2 nanosheets catalyzed CO2 reduction reaction with 100% carbonaceous products. Nano Res 15:1061–1068

    Article  Google Scholar 

  8. Hong D, Tsukakosh Y, Kotani H et al (2017) Visible-light-driven photocatalytic CO2 reduction by a Ni(II) complex bearing a bioinspired tetradentate ligand for selective CO production. J Am Chem Soc 139(19):6538–6541

    Article  CAS  Google Scholar 

  9. Koike K, Hori H, Ishizuka M et al (1997) Key process of the photocatalytic reduction of CO2 Using [Re(4,4′-X2-bipyridine)(CO)3PR3]+(X = CH3, H, CF3; PR3 = phosphorus ligands): dark reaction of the one-electron-reduced complexes with CO2. Am Chem Soc 16:5724–5729

    CAS  Google Scholar 

  10. Rønne MHH, Cho D, Madsen MR et al (2020) Ligand controlled product selectivity in the electrochemical carbon dioxide reduction using manganese bipyridine catalysts. J Am Chem Soc 142:4265–4275

    Article  Google Scholar 

  11. Rao H, Bonin J, Robert M (2017) Visible-light homogeneous photocatalytic conversion of CO2 into CO in aqueous solutions with an iron catalyst. Chem Sus Chem 10(22):4447–4450

    Article  CAS  Google Scholar 

  12. Bonin J, Maurin A, Robert M (2017) Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal based complexes. Recent advances. Coord Chem Rev 334:184–198

    Article  CAS  Google Scholar 

  13. Chen LJ, Qin YF, Chen G et al (2019) A molecular noble metal-free system for efficient visible light-driven reduction of CO2 to CO. Dalton Trans 48(26):9596–9602

    Article  CAS  Google Scholar 

  14. Fu ZC, Mi C, Sun Y, Yang Z, Xu QQ, Fu WF (2019) An Unexpected iron(II)-based homogeneous catalytic system for highly efficient CO2-to-CO conversionunder visible-light irradiation. Molecules 24:1878

    Article  CAS  Google Scholar 

  15. Ouyang TH, Huang HH, Wang JW, Zhong DC, Lu TB (2017) A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible-light driven CO2 reduction to CO in CH3CN/H2O solution. Angew Chem Int Ed 56(3):738–743

    Article  CAS  Google Scholar 

  16. Yamazakia Y, Takedaa H, Ishitani O (2015) Photocatalytic reduction of CO2 using metal complexes. J Photochem Photobiol C 25:106–137

    Article  Google Scholar 

  17. Appel AM, Bercaw JE, Bocarsly AB et al (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113(8):6621–6658

    Article  CAS  Google Scholar 

  18. Aresta M (2003) Carbon dioxide utilization: greening both the energy and chemical industry: an overview. Am Chem Soc 852:2–39

    CAS  Google Scholar 

  19. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Khn FE (2011) Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge. Angew Chem Int Ed 50(37):8510–8537

    Article  CAS  Google Scholar 

  20. Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3(1):43–81

    Article  CAS  Google Scholar 

  21. Sakakura T, Choi JC, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107(6):2356–2387

    Article  Google Scholar 

  22. Pun SN, Chung WH, Wong KY et al (2002) Iron(I) complexes of 2,9-bis(2-hydroxyphenyl)-1,10-phenanthroline (H2dophen) as electrocatalysts for carbon dioxide reduction. X-ray crystal structures of [Fe(dophen)Cl]2·2HCON(CH3)2 and [Fe(dophen)(N-MeIm)2]ClO4 (N-MeIm = 1-methylimidazole). J Chem Soc Dalton Trans 2002:575–583

    Article  Google Scholar 

  23. Bonin J, Robert M, Routier M (2014) Selective and efficient photocatalytic CO2 reduction to CO using visible light and an iron-based homogeneous catalyst. J Am Chem Soc 136(48):16768–167671

    Article  CAS  Google Scholar 

  24. Takeda H, Ohashi K, Sekine A, Ishitani O (2016) Photocatalytic CO2 reduction using Cu(I) photosensitizers with a Fe(II) catalyst. J Am Chem Soc 138(13):4354–4357

    Article  CAS  Google Scholar 

  25. Taft KL, Masschelein A, Liu S, Lippard SJ, Bino A (1992) Models of the oxidized forms of polyiron oxo proteins: synthetic routes to (p-oxo)bis( p-carboxylato)diiron(III) complexes with neutral monodentate and bidentate capping ligands. Inorg Chimica Acta 198:627–631

    Article  Google Scholar 

  26. Tamaki Y, Koike K, Morimoto T, Ishitani O (2013) Substantial improvement in the efficiency and durability of a photocatalyst for carbon dioxide reduction using a benzoimidazole derivative as an electron donor. J Catal 304:22–28

    Article  CAS  Google Scholar 

  27. IqbalBhugun DL, Save’ant JM (1996) Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins: synergystic effect of weak Bro¨nsted acids. J Am Chem Soc 118(7):1769–1776

    Article  Google Scholar 

  28. Takeda H, Ishitani O (2010) Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coord Chem Rev 254:346–354

    Article  CAS  Google Scholar 

  29. Fu ZC, Mi C, Sun Y, Yang Z, Xu QQ, Fu WF (1878) An unexpected iron(II)-based homogeneous catalytic system for highly efficient CO2-to-CO conversionunder visible-light irradiation. Molecules 2019:24

    Google Scholar 

  30. Montalti ACM, Prodi L, Gandolfi MT (2006) Handbook of photochemistry, 3rd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  31. Xu QQ, Fu WF, Zhang G et al (2008) Photocatalytic H2 evolution from water based on cyclometalated platinum(II) complex. Catal Commun 10(1):49–52

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (21162043, 21363028, 21763033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan-Qing Xu or Wei-Hua Mu.

Ethics declarations

Conflict of interest

For each contributing authors, there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3468 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, NX., Zhi Yang, Lu, XB. et al. An Dinuclear Iron (III)-Based Homogeneous Catalytic System: Robust, Efficient and Highly Selective CO2-to-CO Conversion under Visible Light. Catal Lett 153, 74–82 (2023). https://doi.org/10.1007/s10562-022-03953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03953-0

Keywords

Navigation