Skip to main content
Log in

Recyclable Copper-Catalyzed Decarboxylative C–C Coupling of the sp3-Hybridized Carbon Atoms of α-Amino Acids

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A highly efficient heterogeneous copper(I)-catalyzed decarboxylative C–C coupling of α-amino acids with various carbon nucleophiles has been developed that proceeds smoothly in toluene at 110 °C by using an 2-aminoethylamino-modified SBA-15-supported copper(I) bromide complex as the catalyst and di-tert-butyl peroxide as the oxidant and provides a novel and practical approach for the synthesis of diverse propargylamines, indolyl pyrrolidines and piperidines, and β-nitroamines in good yields. The new heterogeneous copper(I) catalyst can be facilely prepared from commercially easily available and inexpensive reagents via a simple procedure, and exhibits a slightly higher catalytic activity than homogeneous CuBr/TMEDA system and can be recycled at least 8 times without any apparent loss of catalytic efficiency.

Graphical Abstract

A recyclable copper(I)-catalyzed decarboxylative C–C coupling of α-amino acids with various carbon nucleophiles has been developed by using an SBA-15-supported copper(I) bromide complex as the catalyst, providing a novel and practical approach for the synthesis of diverse propargylamines, indolyl pyrrolidines and piperidines, and β-nitroamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vollhardt KPC, Schore NE (2000) Organische Chemie, 3rd edn. Wiley, Weinheim, p 1081

    Google Scholar 

  2. Gooßen LJ, Rodriguez N, Gooßen K (2008) Angew Chem Int Ed 47:3100–3120

    Article  Google Scholar 

  3. Rodriguez N, Gooßen LJ (2011) Chem Soc Rev 40:5030–5048

    Article  CAS  Google Scholar 

  4. Weaver JD, Recio A, Grenning AJ, Tunge JA (2011) Chem Rev 111:1846–1913

    Article  CAS  Google Scholar 

  5. Patra T, Maiti D (2017) Chem Eur J 23:7382–7401

    Article  CAS  Google Scholar 

  6. Wei Y, Hu P, Zhang M, Su W (2017) Chem Rev 117:8864–8907

    Article  CAS  Google Scholar 

  7. Yin F, Wang Z, Li Z, Li C (2012) J Am Chem Soc 134:10401–10404

    Article  CAS  Google Scholar 

  8. Kong D, Moon PJ, Bsharat O, Lundgren RJ (2020) Angew Chem Int Ed 59:1313–1319

    Article  CAS  Google Scholar 

  9. Edwards JT, Merchant RR, McClymont KS, Knouse KW, Qin T, Malins LR, Vokits B, Shaw SA, Bao D-H, Wei F-L, Zhou T, Eastgate MD, Baran PS (2017) Nature 545:213–218

    Article  CAS  Google Scholar 

  10. Ventre S, Petronijevic FR, MacMillan DWC (2015) J Am Chem Soc 137:5654–5657

    Article  CAS  Google Scholar 

  11. Zhao W, Wurz RP, Peters JC, Fu GC (2017) J Am Chem Soc 139:12153–12156

    Article  CAS  Google Scholar 

  12. Liang Y, Zhang X, MacMillan DWC (2018) Nature 559:83–88

    Article  CAS  Google Scholar 

  13. Fu M-C, Shang R, Zhao B, Wang B, Fu Y (2019) Science 363:1429–1434

    Article  CAS  Google Scholar 

  14. Na CG, Ravelli D, Alexanian EJ (2020) J Am Chem Soc 142:44–49

    Article  CAS  Google Scholar 

  15. Saxton JE (1997) Nat Prod Rep 14:559–590

    Article  CAS  Google Scholar 

  16. Mitchenson A, Nadin A (2000) J Chem Soc Perkin Trans 1:2862–2892

    Article  Google Scholar 

  17. Cox ED, Cook JM (1995) Chem Rev 95:1797–1842

    Article  CAS  Google Scholar 

  18. Le C, Liang Y, Evans RW, Li X, MacMillan DWC (2017) Nature 547:79–83

    Article  CAS  Google Scholar 

  19. Trowbridge A, Reich D, Gaunt MJ (2018) Nature 561:522–527

    Article  CAS  Google Scholar 

  20. Paul A, Seidel D (2019) J Am Chem Soc 141:8778–8782

    Article  CAS  Google Scholar 

  21. Li C-J (2009) Acc Chem Res 42:335–344

    Article  CAS  Google Scholar 

  22. Girard SA, Knauber T, Li C-J (2014) Angew Chem Int Ed 53:74–100

    Article  CAS  Google Scholar 

  23. Bi H-P, Zhao L, Liang Y-M, Li C-J (2009) Angew Chem Int Ed 48:792–795

    Article  CAS  Google Scholar 

  24. Bi HP, Teng Q, Guan M, Chen WW, Liang YM, Yao X, Li CJ (2010) J Org Chem 75:783–788

    Article  CAS  Google Scholar 

  25. Zhang C, Seidel D (2010) J Am Chem Soc 132:1798–1799

    Article  CAS  Google Scholar 

  26. Kumar A, Kumar M, Gupta LP, Gupta MK (2014) RSC Adv 4:9412–9415

    Article  CAS  Google Scholar 

  27. Mao Z-Y, Liu Y-W, Ma R-J, Ye J-L, Si C-M, Wei B-G, Lin G-Q (2019) Chem Commun 55:14170–14173

    Article  CAS  Google Scholar 

  28. Noble A, MacMillan DWC (2014) J Am Chem Soc 136:11602–11605

    Article  CAS  Google Scholar 

  29. Zou Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DWC (2014) Science 345:437–440

    Google Scholar 

  30. Jiang M, Yang H, Fu H (2016) Org Lett 18:1968–1971

    Article  CAS  Google Scholar 

  31. Zhang H, Zhang P, Jiang M, Yang H, Fu H (2017) Org Lett 19:1016–1019

    Article  CAS  Google Scholar 

  32. Li J, Lefebvre Q, Yang H, Zhao Y, Fu H (2017) Chem Commun 53:10299–10302

    Article  CAS  Google Scholar 

  33. Guo J, Xie Y, Wu Q-L, Zeng W-T, Chan ASC, Weng J, Lu G (2018) RSC Adv 8:16202–16206

    Article  CAS  Google Scholar 

  34. Bi H-P, Chen W-W, Liang Y-M, Li C-J (2009) Org Lett 11:3246–3249

    Article  CAS  Google Scholar 

  35. Gladysz JA (2009). In: Benaglia M (ed) Recoverable and recyclable catalysts. Wiley, Chichester, pp 1–14

    Google Scholar 

  36. Macquarrie D (2010). In: Barbaro P, Liguori F (eds) Heterogenized homogeneous catalysts for fine chemicals production. Springer, Berlin, pp 1–35

    Google Scholar 

  37. Phan NTS, Sluys MVD, Jones CW (2006) Adv Synth Catal 348:609–679

    Article  CAS  Google Scholar 

  38. Akiyama R, Kobayashi S (2009) Chem Rev 109:594–642

    Article  CAS  Google Scholar 

  39. Climent MJ, Corma A, Iborra S (2011) Chem Rev 111:1072–1133

    Article  CAS  Google Scholar 

  40. Benyahya S, Monnier F, Taillefer M, Chi Man MW, Bied C, Ouazzani F (2008) Adv Synth Catal 350:2205–2208

    Article  CAS  Google Scholar 

  41. Benyahya S, Monnier F, Chi Man MW, Bied C, Ouazzani F, Taillefer M (2009) Green Chem 11:1121–1123

    Article  CAS  Google Scholar 

  42. Phan NTS, Nguyen TT, Nguyen VT, Nguyen KD (2013) ChemCatChem 5:2374–2379

    Article  CAS  Google Scholar 

  43. Yang J, Li P, Wang L (2011) Tetrahedron 67:5543–5549

    Article  CAS  Google Scholar 

  44. Magne V, Garnier T, Danel M, Pale P, Chassaing S (2015) Org Lett 17:4494–4497

    Article  CAS  Google Scholar 

  45. Zhao H, Jiang Y, Chen Q, Cai M (2015) New J Chem 39:2106–2115

    Article  CAS  Google Scholar 

  46. Niu B, You C, Huang B, Cai M (2019) Catal Commun 123:11–16

    Article  CAS  Google Scholar 

  47. Kantam ML, Reddy CV, Srinivas P, Bhargava S (2013) In Topics in Organometallic Chemistry, Eds. Taillefer M, Ma D, Springer, Heidelberg, vol. 46, pp.119

  48. Chassaing S, Sido ASS, Alix A, Kumarraja M, Pale P, Sommer J (2008) Chem Eur J 14:6713–6721

    Article  CAS  Google Scholar 

  49. Pan S, Yan S, Osako T, Uozumi Y (2017) ACS Sustain Chem Eng 5:10722–10734

    Article  CAS  Google Scholar 

  50. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  51. Friedrich H, Sietsma JRA, de Jongh PE, Verkleij AJ, de Jong KP (2007) J Am Chem Soc 129:10249–10254

    Article  CAS  Google Scholar 

  52. Baltes M, Cassiers K, Van Der Voort P, Weckhuysen BM, Schoonheydt RA, Vansant EF (2001) J Catal 197:160–171

    Article  CAS  Google Scholar 

  53. Rohani S, Ziarani GM, Badiei A, Ziarati A, Jafari M, Shayyesteh A (2018) Appl Organometall Chem 32:e4397

    Article  Google Scholar 

  54. Nouri K, Hajjami M, Azadi G (2018) Catal Lett 148:671–679

    Article  CAS  Google Scholar 

  55. Lai YT, Chen TC, Lan YK, Chen BS, You JH, Yang CM, Lai NC, Wu JH, Chen CS (2014) ACS Catal 4:3824–3836

    Article  CAS  Google Scholar 

  56. Huo Y, Hu J, Lin S, Ju X, Wei Y, Huang Z, Hu Y, Tu Y (2019) Appl Organometall Chem 33:e4874

    Article  Google Scholar 

  57. Zhao J, Yuan H, Qin X, Tian K, Liu Y, Wei C, Zhang Z, Zhou L, Fang S (2020) Catal Lett 150:2841–2849

    Article  CAS  Google Scholar 

  58. Chen CS, Lai YT, Lai TW, Wu JH, Chen CH, Lee JF, Kao HM (2013) ACS Catal 3:667–677

    Article  CAS  Google Scholar 

  59. Bardajee GR, Mohammadi M, Kakavand N (2016) Appl Organometall Chem 30:51–58

    Article  CAS  Google Scholar 

  60. Hajjami M, Ghorbani F, Yousofvand Z (2017) Appl Organometall Chem 31:3843

    Article  Google Scholar 

  61. Luan Z, Fournier JA (2005) Micro Meso Mater 79:235–240

    Article  CAS  Google Scholar 

  62. Lucet D, Le Gall T, Mioskowski C (1998) Angew Chem Int Ed 37:2580–2627

    Article  CAS  Google Scholar 

  63. Lempers HEB, Sheldon RA (1998) J Catal 175:62–69

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (No. 21664008) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Huang or Mingzhong Cai.

Ethics declarations

Conflict of interest

The author guarantees that there is no conflict of interest with the co-author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Li, J., Huang, B. et al. Recyclable Copper-Catalyzed Decarboxylative C–C Coupling of the sp3-Hybridized Carbon Atoms of α-Amino Acids. Catal Lett 153, 178–187 (2023). https://doi.org/10.1007/s10562-022-03936-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03936-1

Keywords

Navigation