Skip to main content

Advertisement

Log in

Cu(II)/Triazine-Based Dendrimer as an Efficacious Recoverable Nano-catalyst for CO2 Fixation Under Solvent-Free Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, a new and efficient solvent-less procedure was expanded to synthesize cyclic carbonate derivatives by chemical fixation of CO2 using Cu(II)/hydroxyl terminated triazine-based dendrimer (Cu(II)/TD) as a proficient heterogeneous nano-catalyst. The Cu(II)/TD nano-catalyst was characterized using TEM, TGA, FT-IR, SEM, EDS, and ICP techniques. The application of this new nano-catalyst provides the preparation of assorted cyclic carbonate derivatives in the attendance of 0.045 mol% of nano-catalyst and 0.3 MPa of CO2 pressure at 50 °C under solvent-less situations in outstanding yields. The Cu(II)/TD catalyst was able to be reprocessed and recovered many times without considerable failure of its performance. The findings strongly confirm that Cu(II)/TD can be considered as an environmentally friendly and retrievable catalyst for fixation of CO2 into the valuable products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 4
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lim M, Han GC, Ahn JW, You KS (2010) Int J Environ Res Public Health 7:203–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Angew Chem Int Ed 50:8510–8537

    Article  CAS  Google Scholar 

  3. Sakakura T, Choi JC, Yasuda H (2007) Chem Rev 107:2365–2387

    Article  PubMed  CAS  Google Scholar 

  4. Webster DC (2003) Prog Org Coat 47:77–86

    Article  CAS  Google Scholar 

  5. Rokicki G (2000) Prog Polym Sci 25:259–342

    Article  CAS  Google Scholar 

  6. Guha N, Gupta AK, Chatterjee S, Krishnan S, Singh MK, Rai DK (2021) J CO2 Util 49:101575

    Article  CAS  Google Scholar 

  7. Taghavi F, Khojastehnezhad A, Khalifeh R, Rajabzadeh M, Rezaei F, Abnous K, Taghdisi SM (2021) New J Chem 45:15405–15414

    Article  CAS  Google Scholar 

  8. Bai D, Jing H (2010) Green Chem 12:39–41

    Article  CAS  Google Scholar 

  9. Cui M, Shamsa F (2021). Catal Lett. https://doi.org/10.1007/s10562-021-03616-6

    Article  Google Scholar 

  10. Dai W, Zou M, Long J, Li B, Zhang S, Yang L, Wang D, Mao P, Luo S, Luo X (2021) Appl Surf Sci 540:148311

    Article  CAS  Google Scholar 

  11. Paninho AB, Mustapa AN, Mahmudov KT, Pombeiro AJ, Guedes da Silva MFC, Bermejo MD, Martín Á, Cocero MJ, Nunes AV (2021) Catalysts 11:872

    Article  CAS  Google Scholar 

  12. Boushehri PH, Hafizi A, Rahimpour MR, Khalifeh R (2021). Top Catal. https://doi.org/10.1007/s11244-021-01456-7

    Article  Google Scholar 

  13. Arayachukiat S, Kongtes C, Barthel A, Vummaleti SV, Poater A, Wannakao S, Cavallo L, D’Elia V (2017) ACS Sustain Chem Eng 5:6392–6397

    Article  CAS  Google Scholar 

  14. Sodpiban O, Phungpanya C, Del Gobbo S, Arayachukiat S, Piromchart T, D’Elia V (2021) Chem Eng J 422:129930

    Article  CAS  Google Scholar 

  15. Wang Z, Wang Y, Xie Q, Fan Z, Shen Y (2021) New J Chem 45:9403–9408

    Article  CAS  Google Scholar 

  16. Sodpiban O, Del Gobbo S, Barman S, Aomchad V, Kidkhunthod P, Ould-Chikh S, Poater A, D’Elia V, Basset JM (2019) Catal Sci Technol 9:6152–6165

    Article  CAS  Google Scholar 

  17. Aomchad V, Del Gobbo S, Yingcharoen P, Poater A, D’Elia V (2021) Catal Today 375:324–334

    Article  CAS  Google Scholar 

  18. Aomchad V, Cristòfol À, Della Monica F, Limburg B, D’Elia V, Kleij AW (2021) Green Chem 23:1077–1113

    Article  CAS  Google Scholar 

  19. Grignard B, Gennen S, Jérôme C, Kleij AW, Detrembleur C (2019) Chem Soc Rev 48:4466–4514

    Article  PubMed  CAS  Google Scholar 

  20. Tomalia DA (2004) Aldrichimica Acta 37:39–57

    CAS  Google Scholar 

  21. Patel H, Patel P (2013) Int J Pharm Bio Sci 4:454–463

    CAS  Google Scholar 

  22. Mollazade M, Nejati-Koshki K, Akbarzadeh A, Zarghami N, Nasiri M, Jahanban-Esfahlan R, Alibakhshi A (2013) Asian Pac J Cancer Prev 14:6925–6928

    Article  PubMed  Google Scholar 

  23. Mignani S, El Kazzouli S, Bousmina M, Majoral JP (2013) Adv Drug Deliv Rev 65:1316–1330

    Article  PubMed  CAS  Google Scholar 

  24. Wang D, Astruc D (2013) Coord Chem Rev 257:2317–2334

    Article  CAS  Google Scholar 

  25. Saberi D, Hashemi H, Ghanaatzadeh N, Moghadam M, Niknam K (2020) Appl Organomet Chem 34:e5563

    Article  CAS  Google Scholar 

  26. Fakhar A, Dinari M, Lammertink R, Sadeghi M (2020) Sep Purif Technol 241:116734

    Article  Google Scholar 

  27. Franc G, Badetti E, Colliere V, Majoral JP, Sebastian RM, Caminade AN (2009) Nanoscale 1:233–237

    Article  PubMed  CAS  Google Scholar 

  28. Hagiwara H, Sasaki H, Tsubokawa N, Hoshi T, Suzuki T, Tsuda T, Kuwabata S (2010) Synlett 2010:1990–1996

    Article  Google Scholar 

  29. Pan S, Yan S, Osako T, Uozumi Y (2018) Synlett 29:1152–1156

    Article  CAS  Google Scholar 

  30. Gajjar D, Patel R, Patel H, Patel PM (2014) Chem Sci Trans 3:897–908

    Google Scholar 

  31. Kuśtrowski P, Chmielarz L, Dziembaj R, Cool P, Vansant EF (2005) J Phys Chem B 109:11552–11558

    Article  PubMed  Google Scholar 

  32. Khalifeh R, Zarei Z, Rajabzadeh M (2021) New J Chem 45:810–820

    Article  CAS  Google Scholar 

  33. Rajabzadeh M, Khalifeh R, Eshghi H, Hafizi A (2020) J Ind Eng Chem 89:458–469

    Article  CAS  Google Scholar 

  34. Khalifeh R, Karimi M, Rajabzadeh M, Hafizi A, Nogorani FS (2020) J CO2 Util 41:101233

    Article  CAS  Google Scholar 

  35. Kim J, Kim SN, Jang HG, Seo G, Ahn WS (2013) Appl Catal A Gen 453:175–180

    Article  CAS  Google Scholar 

  36. Aresta M, Dibenedetto A, Gianfrate L, Pastore C (2003) J Mol Catal 204:245–252

    Article  Google Scholar 

  37. Tambe PR, Yadav GD (2018) Clean Technol Environ Policy 20:345–356

    Article  CAS  Google Scholar 

  38. Dai WL, Yin SF, Guo R, Luo SL, Du X, Au CT (2010) Catal Lett 136:35–44

    Article  CAS  Google Scholar 

  39. Prasad D, Patil KN, Bhanushali JT, Nagaraja BM, Jadhav AH (2019) Catal Sci Technol 9:4393–4412

    Article  CAS  Google Scholar 

  40. Wu YL, Yang GP, Cheng S, Qian J, Fan D, Wang YY (2019) ACS Appl Mater Interfaces 11:47437–47445

    Article  PubMed  CAS  Google Scholar 

  41. Zhi Y, Shao P, Feng X, Xia H, Zhang Y, Shi Z, Mu Y, Liu X (2018) J Mater Chem A 6:374–382

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the Islamic Azad University Bandar. Abbas Branch and Shiraz University of Technology for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Moeinpour.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2062 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moeinpour, F., Khalifeh, R., Rajabzadeh, M. et al. Cu(II)/Triazine-Based Dendrimer as an Efficacious Recoverable Nano-catalyst for CO2 Fixation Under Solvent-Free Conditions. Catal Lett 152, 3679–3690 (2022). https://doi.org/10.1007/s10562-022-03935-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03935-2

Keywords

Navigation