Skip to main content

Advertisement

Log in

Autothermal Reforming of Bio-ethanol: A Short Review of Strategies Used to Synthesize Coke-Resistant Nickel-Based Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The paper presents a short review of strategies used to develop coke resistant, nickel-based, catalysts for autothermal reforming of ethanol to hydrogen. Autothermal reforming of ethanol can be used in conjunction with pronton-exchange membrane fuel cells (PEMFCs) in the transportation sector, stationary and portable applications to replace the use of fossil fuels. Nickel-based catalysts are used in commercial processes for their high carbon–carbon bond cleavage and low cost compared to noble metals. However, the use of nickel-based catalysts is challenged by rapid deactivation caused by coke formation. A considerable effort is expended on innovating strategies to develop coke resistant nickel-based catalysts. The strategies reviewed in this paper are (i) the use of catalysts’ preparation methods targeting high dispersion of nickel nanoparticles smaller than the critical size of 10 nm (nm); (ii) modifying commonly used acidic supports (alumina, silica et cetera) to passivate the acidity to inhibit the production of coke precursor-ethylene; (iii) the addition of promoters and second active metals to promote supports and the active phase; (iv) controlling operating conditions to inhibit coke formation and the use of precursors with well-defined structures to stabilize highly dispersed nickel nanoparticles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Spallina V et al (2018) Direct route from ethanol to pure hydrogen through autothermal reforming in a membrane reactor: experimental demonstration, reactor modelling and design. Energy 143:666–681. https://doi.org/10.1016/j.energy.2017.11.031

    Article  CAS  Google Scholar 

  2. Baruah R, Dixit M, Basarkar P, Parikh D, Bhargav A (2015) Advances in ethanol autothermal reforming. Renew Sustain Energy Rev 51:1345–1353. https://doi.org/10.1016/j.rser.2015.07.060

    Article  CAS  Google Scholar 

  3. Ghasemzadeh K, Jalilnejad E, Tilebon SMS (2018) Hydrogen production technologies from ethanol. Elsevier Inc., Amsterdam

    Google Scholar 

  4. Deluga GA et al (2004) Renewable hydrogen from ethanol by autothermal reforming. Science 303(5660):993–997. https://doi.org/10.1126/science.1093045

    Article  CAS  PubMed  Google Scholar 

  5. Holgado M, Alique D (2019) Preliminary equipment design for on-board hydrogen production by steam reforming in palladium membrane reactors. ChemEngineering 3(1):1–13. https://doi.org/10.3390/chemengineering3010006

    Article  CAS  Google Scholar 

  6. Llorca J, Corberán VC, Divins NJ, Fraile RO, Taboada E (2013) Hydrogen from Bioethanol. Renew Hydrog Technol

  7. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem Rev 112(7):4094–4123. https://doi.org/10.1021/cr2000114

    Article  CAS  PubMed  Google Scholar 

  8. Nanda S, Rana R, Zheng Y, Kozinski JA, Dalai AK (2017) Insights on pathways for hydrogen generation from ethanol. Sustain Energy Fuels 1(6):1232–1245. https://doi.org/10.1039/C7SE00212B

    Article  CAS  Google Scholar 

  9. Palma V, Ruocco C, Cortese M, Martino M (2020) Bioalcohol reforming: an overview of the recent advances for the enhancement of catalyst stability. Catalysts. https://doi.org/10.3390/catal10060665

    Article  Google Scholar 

  10. Karakoc OP et al (2019) Nickel-based catalysts for hydrogen production by steam reforming of glycerol. Int J Environ Sci Technol 16(9):5117–5124. https://doi.org/10.1007/s13762-018-1875-8

    Article  CAS  Google Scholar 

  11. Nahar G, Dupont V (2013) Recent advances in hydrogen production via autothermal reforming process (ATR): a review of patents and research articles. Recent Patents Chem Eng 6(1):8–42. https://doi.org/10.2174/2211334711306010003

    Article  CAS  Google Scholar 

  12. Palanisamy A, Soundarrajan N, Ramasamy G (2021) Analysis on production of bioethanol for hydrogen generation. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-14554-6

    Article  Google Scholar 

  13. Pieja AJ, Morse MC, Cal AJ (2017) Methane to bioproducts: the future of the bioeconomy? Curr Opin Chem Biol 41(1):123–131. https://doi.org/10.1016/j.cbpa.2017.10.024

    Article  CAS  PubMed  Google Scholar 

  14. Jeon KW et al (2021) Synthesis gas production from carbon dioxide reforming of methane over Ni-MgO catalyst: combined effects of titration rate during co-precipitation and CeO2 addition. Fuel Process Technol 219:106877. https://doi.org/10.1016/j.fuproc.2021.106877

    Article  CAS  Google Scholar 

  15. Owgi AHK et al (2021) Catalytic systems for enhanced carbon dioxide reforming of methane: a review. Environ Chem Lett 19(3):2157–2183. https://doi.org/10.1007/s10311-020-01164-w

    Article  CAS  Google Scholar 

  16. Bušić A et al (2018) Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol Biotechnol 56(3):289–311. https://doi.org/10.17113/ftb.56.03.18.5546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duque A, Álvarez C, Doménech P, Manzanares P, Moreno AD (2021) Advanced bioethanol production: from novel raw materials to integrated biorefineries. Processes 9(2):1–30. https://doi.org/10.3390/pr9020206

    Article  CAS  Google Scholar 

  18. Deshavath NN, Veeranki VD, Goud VV (2019) Lignocellulosic feedstocks for the production of bioethanol: availability, structure, and composition. Elsevier Inc., Amsterdam

    Google Scholar 

  19. Cherubini F, Wellisch M, Willke T (2009) Toward a common classifi cation approach for biorefi nery systems. Biofuels Bioprod Biorefining. https://doi.org/10.1002/bbb

    Article  Google Scholar 

  20. Devi A, Singh A, Bajar S, Pant D, Din ZU (2021) Ethanol from lignocellulosic biomass: an in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. J Environ Chem Eng 9(5):105798. https://doi.org/10.1016/j.jece.2021.105798

    Article  CAS  Google Scholar 

  21. Chaubey R, Sahu S, James OO, Maity S (2013) A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew Sustain Energy Rev 23:443–462. https://doi.org/10.1016/j.rser.2013.02.019

    Article  CAS  Google Scholar 

  22. Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4(4):1078–1090. https://doi.org/10.1021/cs4011343

    Article  CAS  Google Scholar 

  23. Gallucci F, Van SintAnnaland M, Kuipers JAM (2010) Pure hydrogen production via autothermal reforming of ethanol in a fluidized bed membrane reactor: A simulation study. Int J Hydrog Energy 35(4):1659–1668. https://doi.org/10.1016/j.ijhydene.2009.12.014

    Article  CAS  Google Scholar 

  24. Klouz V et al (2002) Ethanol reforming for hydrogen production in a hybrid electric vehicle: process optimisation. J Power Sources 105(1):26–34. https://doi.org/10.1016/S0378-7753(01)00922-3

    Article  CAS  Google Scholar 

  25. Casas-Ledón Y, Arteaga-Perez LE, Morales-Perez MC, Peralta-Suárez LM (2012) Thermodynamic analysis of the hydrogen production from ethanol: first and second laws approaches. ISRN Thermodyn 2012(1–8):2012. https://doi.org/10.5402/2012/672691

    Article  CAS  Google Scholar 

  26. Ipsakis D, Ouzounidou M, Papadopoulou S, Seferlis P, Voutetakis S (2017) Dynamic modeling and control analysis of a methanol autothermal reforming and PEM fuel cell power system. Appl Energy 208:703–718. https://doi.org/10.1016/j.apenergy.2017.09.077

    Article  CAS  Google Scholar 

  27. Srisiriwat N, Wutthithanyawat C (2013) Autothermal reforming of ethanol for hydrogen production: thermodynamic analysis. Appl Mech Mater 415:658–665. https://doi.org/10.4028/www.scientific.net/AMM.415.658

    Article  CAS  Google Scholar 

  28. FaurGhenciu A, Ghenciu AF (2002) Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr Opin Solid State Mater Sci 6(5):389–399. https://doi.org/10.1016/S1359-0286(02)00108-0

    Article  CAS  Google Scholar 

  29. Ahn K, Lee JH, Kim H, Kim J (2018) Enhanced carbon tolerance of Ir alloyed Ni-based metal for methane partial oxidation. Heliyon 4(6):e00652. https://doi.org/10.1016/j.heliyon.2018.e00652

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chiu WC, Horng RF, Chou HM (2013) Hydrogen production from an ethanol reformer with energy saving approaches over various catalysts. Int J Hydrog Energy 38(6):2760–2769. https://doi.org/10.1016/j.ijhydene.2012.12.068

    Article  CAS  Google Scholar 

  31. Khila Z, Hajjaji N, Pons MN, Renaudin V, Houas A (2013) A comparative study on energetic and exergetic assessment of hydrogen production from bioethanol via steam reforming, partial oxidation and auto-thermal reforming processes. Fuel Process Technol 112:19–27. https://doi.org/10.1016/j.fuproc.2013.02.013

    Article  CAS  Google Scholar 

  32. Cai W, Wang F, Zhan E, Van Veen AC, Mirodatos C, Shen W (2008) Hydrogen production from ethanol over Ir/CeO2 catalysts: a comparative study of steam reforming, partial oxidation and oxidative steam reforming. J Catal 257(1):96–107. https://doi.org/10.1016/j.jcat.2008.04.009

    Article  CAS  Google Scholar 

  33. Frontera P et al (2018) Trimetallic ni-based catalysts over gadolinia-doped ceria for green fuel production. Catalysts 8(10):1–20. https://doi.org/10.3390/catal8100435

    Article  CAS  Google Scholar 

  34. De Lima SM et al (2012) Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La 1-xCe xNiO 3 perovskite-type oxides. Appl Catal B Environ 121–122:1–9. https://doi.org/10.1016/j.apcatb.2012.03.017

    Article  CAS  Google Scholar 

  35. Ruocco C, Palma V, Ricca A (2019) Experimental and kinetic study of oxidative steam reforming of ethanol over fresh and spent bimetallic catalysts. Chem Eng J 377:119778. https://doi.org/10.1016/j.cej.2018.08.164

    Article  CAS  Google Scholar 

  36. Wutthithanyawat C, Srisiriwat N (2014) Autothermal reforming of ethanol for hydrogen production: modeling and simulation. Appl Mech Mater 541–542:108–112. https://doi.org/10.4028/www.scientific.net/AMM.541-542.108

    Article  CAS  Google Scholar 

  37. Zhang T, Wang P, Chen H, Pei P (2018) A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Appl Energy 223:249–262. https://doi.org/10.1016/j.apenergy.2018.04.049

    Article  Google Scholar 

  38. Barbier J (1987) Coking of reforming catalysts, vol 34. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  39. Martin S, Wörner A (2011) On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells: comparison of autothermal reforming and steam reforming. J Power Sources 196(6):3163–3171. https://doi.org/10.1016/j.jpowsour.2010.11.100

    Article  CAS  Google Scholar 

  40. Markova D, Bazbauers G, Valters K, Alhucema Arias R, Weuffen C, Rochlitz L (2009) Optimization of bio-ethanol autothermal reforming and carbon monoxide removal processes. J Power Sources 193(1):9–16. https://doi.org/10.1016/j.jpowsour.2009.01.095

    Article  CAS  Google Scholar 

  41. Sun S, Yan W, Sun P, Chen J (2012) Thermodynamic analysis of ethanol reforming for hydrogen production. Energy 44(1):911–924. https://doi.org/10.1016/j.energy.2012.04.059

    Article  CAS  Google Scholar 

  42. Meloni E, Martino M, Palma V (2020) A short review on ni based catalysts and related engineering issues for methane steam reforming. Catalysts. https://doi.org/10.3390/catal10030352

    Article  Google Scholar 

  43. Divins NJ, López E, Rodríguez Á, Vega D, Llorca J (2013) Bio-ethanol steam reforming and autothermal reforming in 3-μm channels coated with RhPd/CeO2 for hydrogen generation. Chem Eng Process Process Intensif 64:31–37. https://doi.org/10.1016/j.cep.2012.10.018

    Article  CAS  Google Scholar 

  44. Wei Z, Sun J, Li Y, Datye AK, Wang Y (2012) Bimetallic catalysts for hydrogen generation. Chem Soc Rev 41(24):7994–8008. https://doi.org/10.1039/c2cs35201j

    Article  CAS  PubMed  Google Scholar 

  45. Palma V, Ruocco C, Meloni E, Ricca A (2017) Influence of catalytic formulation and operative conditions on coke deposition over CeO2-SiO2 based catalysts for ethanol reforming. Energies. https://doi.org/10.3390/en10071030

    Article  Google Scholar 

  46. Markova D, Valters K, Bazbauers G (2009) Optimization of ethanol autothermal reforming process with chemical equilibrium calculations. Environ Clim Technol 3(3):79–85. https://doi.org/10.2478/v10145-009-0011-x

    Article  Google Scholar 

  47. Youn MH, Seo JG, Lee H, Bang Y, Chung JS, Song IK (2010) Hydrogen production by auto-thermal reforming of ethanol over nickel catalysts supported on metal oxides: effect of support acidity. Appl Catal B 98(1–2):57–64. https://doi.org/10.1016/j.apcatb.2010.05.002

    Article  CAS  Google Scholar 

  48. Furtado AC, Alonso CG, Cantão MP, Fernandes-Machado NRC (2011) Support influence on Ni-Cu catalysts behavior under ethanol oxidative reforming reaction. Int J Hydrog Energy 36(16):9653–9662. https://doi.org/10.1016/j.ijhydene.2011.05.063

    Article  CAS  Google Scholar 

  49. Lamb JJ et al (2020) Traditional routes for hydrogen production and carbon conversion. Elsevier Ltd, Amsterdam

    Book  Google Scholar 

  50. Chen H et al (2010) Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3. Chem Eng J 160(1):333–339. https://doi.org/10.1016/j.cej.2010.03.054

    Article  CAS  Google Scholar 

  51. Xiao Z et al (2019) Engineering oxygen vacancies and nickel dispersion on CeO2 by Pr doping for highly stable ethanol steam reforming. Appl Catal B 258:117940. https://doi.org/10.1016/j.apcatb.2019.117940

    Article  CAS  Google Scholar 

  52. Liu CJ, Ye J, Jiang J, Pan Y (2011) Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO 2 reforming of methane. ChemCatChem 3(3):529–541. https://doi.org/10.1002/cctc.201000358

    Article  CAS  Google Scholar 

  53. Huang L, Xie J, Chen R, Chu D, Chu W, Hsu AT (2008) Effect of iron on durability of nickel-based catalysts in auto-thermal reforming of ethanol for hydrogen production. Int J Hydrog Energy 33(24):7448–7456. https://doi.org/10.1016/j.ijhydene.2008.09.062

    Article  CAS  Google Scholar 

  54. Da Silva AM, De Souza KR, Mattos LV, Jacobs G, Davis BH, Noronha FB (2011) The effect of support reducibility on the stability of Co/CeO2 for the oxidative steam reforming of ethanol. Catal Today 164(1):234–239. https://doi.org/10.1016/j.cattod.2010.10.033

    Article  CAS  Google Scholar 

  55. Riley C et al (2019) Synthesis of nickel-doped ceria catalysts for selective acetylene hydrogenation. ChemCatChem 11(5):1526–1533. https://doi.org/10.1002/cctc.201801976

    Article  CAS  Google Scholar 

  56. Le Valant A, Can F, Bion N, Duprez D, Epron F (2010) Hydrogen production from raw bioethanol steam reforming: optimization of catalyst composition with improved stability against various impurities. Int J Hydrogen Energy 35(10):5015–5020. https://doi.org/10.1016/j.ijhydene.2009.09.008

    Article  CAS  Google Scholar 

  57. Huang L, Zhang F, Wang N, Chen R, Hsu AT (2012) Nickel-based perovskite catalysts with iron-doping via self-combustion for hydrogen production in auto-thermal reforming of Ethanol. Int J Hydrog Energy 37(2):1272–1279. https://doi.org/10.1016/j.ijhydene.2011.10.005

    Article  CAS  Google Scholar 

  58. Royer S et al (2014) Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem Rev 114(20):10292–10368. https://doi.org/10.1021/cr500032a

    Article  CAS  PubMed  Google Scholar 

  59. Gao X, Wang Z, Ashok J, Kawi S (2020) A comprehensive review of anti-coking, anti-poisoning and anti-sintering catalysts for biomass tar reforming reaction. Chem Eng Sci 7:100065. https://doi.org/10.1016/j.cesx.2020.100065

    Article  CAS  Google Scholar 

  60. Oemar U, Kathiraser Y, Ang ML, Hidajat K, Kawi S (2015) Catalytic biomass gasification to syngas over highly dispersed lanthanum-doped nickel on SBA-15. ChemCatChem 7(20):3376–3385. https://doi.org/10.1002/cctc.201500482

    Article  CAS  Google Scholar 

  61. Li X, Huang Y, Zhang Q, Luan C, Vinokurov VA, Huang W (2019) Highly stable and anti-coking Ni/MoCeZr/MgAl2O4-MgO complex support catalysts for CO2 reforming of CH4: effect of the calcination temperature. Energy Convers Manag 179(2018):166–177. https://doi.org/10.1016/j.enconman.2018.10.067

    Article  CAS  Google Scholar 

  62. Mehrabadi BAT, Eskandari S, Khan U, White RD, Regalbuto JR (2017) A review of preparation methods for supported metal catalysts, vol 61, 1st edn. Elsevier Inc., Amsterdam

    Google Scholar 

  63. Cai W, Wang F, Van Veen AC, Provendier H, Mirodatos C, Shen W (2008) Autothermal reforming of ethanol for hydrogen production over an Rh/CeO2 catalyst. Catal Today 138(3–4):152–156. https://doi.org/10.1016/j.cattod.2008.05.019

    Article  CAS  Google Scholar 

  64. Soykal II, Sohn H, Ozkan US (2012) Effect of support particle size in steam reforming of ethanol over Co/CeO 2 catalysts. ACS Catal 2(11):2335–2348. https://doi.org/10.1021/cs3004159

    Article  CAS  Google Scholar 

  65. Tang S, Ji L, Lin J, Zeng HC, Tan KL, Li K (2000) CO2 reforming of methane to synthesis gas over sol-gel-made Ni/γ-Al2O3 catalysts from organometallic precursors. J Catal 194(2):424–430. https://doi.org/10.1006/jcat.2000.2957

    Article  CAS  Google Scholar 

  66. Ruocco C, Palma V, Ricca A (2019) Hydrogen production by oxidative reforming of ethanol in a fluidized bed reactor using a Pt[sbnd]Ni/CeO2[sbnd]SiO2 catalyst. Int J Hydrog Energy 44(25):12661–12670. https://doi.org/10.1016/j.ijhydene.2018.12.154

    Article  CAS  Google Scholar 

  67. Lercher JA, Bitter JH, Hally W, Niessen W, Seshan K (1996) Design of stable catalysts for methane-carbon dioxide reforming. Stud Surf Sci Catal 101(1):463–472. https://doi.org/10.1016/s0167-2991(96)80257-6

    Article  CAS  Google Scholar 

  68. Qiao B et al (2015) Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res 8(9):2913–2924. https://doi.org/10.1007/s12274-015-0796-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the University of South Africa (UNISA), Institute of Development of Energy for African Sustainability (IDEAs) and National Research Fund (NRF) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babusi Balopi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balopi, B., Moyo, M. & Gorimbo, J. Autothermal Reforming of Bio-ethanol: A Short Review of Strategies Used to Synthesize Coke-Resistant Nickel-Based Catalysts. Catal Lett 152, 3004–3016 (2022). https://doi.org/10.1007/s10562-021-03892-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03892-2

Keywords

Navigation