Skip to main content

Advertisement

Log in

Facile Preparation of Nanosized MoP as Cocatalyst Coupled with TiO2 for Highly Efficient Photocatalytic H2 Production

  • Published:
Catalysis Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Presently, combining MoP as a co-catalyst and another subjective semiconductor into a composite catalyst often requires the use of various complex reduction methods. In this study, a TiO2/MoP composite photocatalyst with high catalytic performance was successfully prepared by a facile ultrasonic dispersion method. The results of the hydrogen evolution performance, compared to the TiO2, showed that the TiO2 coupling with the MoP co-catalyst remarkably enhanced the photocatalytic performance. The optimized TiO2/MoP-5p catalyst had the highest H2-evolution rate of 4.3 mmolg−1 h−1 (AQE = 8.3%) under UV light irradiation, which is 19 times higher than that of pure TiO2. In addition, it had a good stability. Due to the low impedance and the metal–semiconductor system between the TiO2 and MoP, the constructed TiO2/MoP hybrid can effectively separate the photogenerated electrons and holes, and further improve the photocatalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Singh R, Dutta S (2018) Fuel 220:607–620

    Article  CAS  Google Scholar 

  2. Qi K, Cheng B, Yu J, Ho W (2017) Chin J Catal 38(12):1936–1955

    Article  CAS  Google Scholar 

  3. Ge M, Cai J, Iocozzia J, Cao C, Huang J, Zhang X, Shen J, Wang S, Zhang S, Zhang K-Q, Lai Y, Lin Z (2017) Int J Hydrogen Energy 42(12):8418–8449

    Article  CAS  Google Scholar 

  4. Shtyka O, Ciesielski R, Kedziora A, Maniukiewicz W, Dubkov S, Gromov D, Maniecki T (2020) Top Catal 63(1–2):113–120

    Article  CAS  Google Scholar 

  5. Busiakiewicz A, Kisielewska A, Piwoński I, Batory D, Pabianek K (2019) Vacuum 163:248–254

    Article  CAS  Google Scholar 

  6. Hampel B, Pap Z, Sapi A, Szamosvolgyi A, Baia L, Hernadi K (2020) Catalysts 10(1):85

    Article  CAS  Google Scholar 

  7. Zhou F, Liu W, Miao Z, Wang Q (2019) ChemistrySelect 4(24):7260–7269

    Article  CAS  Google Scholar 

  8. Zheng L, Teng F, Ye X, Zheng H, Fang X (2019) Adv Energy Mater 10(1):1902355

    Article  Google Scholar 

  9. Ye J, He J, Wang S, Zhou X, Zhang Y, Liu G, Yang Y (2019) Sep Purif Technol 220:8–15

    Article  CAS  Google Scholar 

  10. Razavi-Khosroshahi H, Wenhao S, Fuji M (2020) Solid State Sci 103:106179

    Article  CAS  Google Scholar 

  11. Wei Y, Wang J, Yu R, Wan J, Wang D (2019) Angew Chem Int Ed Engl 58(5):1422–1426

    Article  CAS  PubMed  Google Scholar 

  12. Sun S, Ding H, Wang J, Li W, Hao Q (2020) Ceram Int 46(14):22944–22953

    Article  CAS  Google Scholar 

  13. Zhou H, Wang L, Shi H, Zhang H, Wang Y, Bai S, Yang Y, Li Y, Zhang T, Zhang H (2021) New J Chem 45(31):14167–14176

    Article  CAS  Google Scholar 

  14. He H, Lin J, Fu W, Wang X, Wang H, Zeng Q, Gu Q, Li Y, Yan C, Tay BK, Xue C, Hu X, Pantelides ST, Zhou W, Liu Z (2016) Adv Energy Mater 6(14):1600464

    Article  Google Scholar 

  15. Liu X, Xing Z, Zhang Y, Li Z, Wu X, Tan S, Yu X, Zhu Q, Zhou W (2017) Appl Catal B 201:119–127

    Article  CAS  Google Scholar 

  16. Komba N, Zhang G, Pu Z, Wu M, Rosei F, Sun S (2020) Int J Hydrogen Energy 45(7):4468–4480

    Article  CAS  Google Scholar 

  17. Lei X, Yu K, Tang Z, Zhu Z (2017) J Appl Phys 121(4):044303

    Article  Google Scholar 

  18. Zheng X, Yang L, Li Y, Yang L, Luo S (2019) Electrochim Acta 298:663–669

    Article  CAS  Google Scholar 

  19. Yang S, Shao C, Zhou X, Li X, Tao R, Li X, Liu S, Liu Y (2020) ACS Appl Nano Mater 3(3):2278–2287

    Article  CAS  Google Scholar 

  20. Zhuang Z, Li Y, Li Z, Lv F, Lang Z, Zhao K, Zhou L, Moskaleva L, Guo S, Mai L (2018) Angew Chem Int Ed Engl 57(2):496–500

    Article  CAS  PubMed  Google Scholar 

  21. Vrubel H, Hu X (2012) Angew Chem Int Ed Engl 51(51):12703–12706

    Article  CAS  PubMed  Google Scholar 

  22. Park H, Encinas A, Scheifers JP, Zhang Y, Fokwa BPT (2017) Angew Chem Int Ed Engl 56(20):5575–5578

    Article  CAS  PubMed  Google Scholar 

  23. Yan H, Xie Y, Jiao Y, Wu A, Tian C, Zhang X, Wang L, Fu H (2018) Adv Mater 30(2):1704156

    Article  Google Scholar 

  24. Liu J, Wang P, Fan J, Yu H, Yu J (2021) ACS Sustain Chem Eng 9(10):3828–3837

    Article  CAS  Google Scholar 

  25. Liu Y, Yu G, Li GD, Sun Y, Asefa T, Chen W, Zou X (2015) Angew Chem Int Ed Engl 54(37):10902–10907

    Article  Google Scholar 

  26. Huang Y, Gong Q, Song X, Feng K, Nie K, Zhao F, Wang Y, Zeng M, Zhong J, Li Y (2016) ACS Nano 10(12):11337–11343

    Article  CAS  PubMed  Google Scholar 

  27. Xia K, Chen Z, Yi J, Xu H, Yu Y, She X, Mo Z, Chen H, Xu Y, Li H (2018) Ind Eng Chem Res 57(27):8863–8870

    Article  CAS  Google Scholar 

  28. Xiong J, Cai W, Shi W, Zhang X, Li J, Yang Z, Feng L, Cheng H (2017) J Mater Chem A 5(46):24193–24198

    Article  CAS  Google Scholar 

  29. Ramesh R, Nandi DK, Kim TH, Cheon T, Oh J, Kim SH (2019) ACS Appl Mater Interfaces 11(19):17321–17332

    Article  CAS  PubMed  Google Scholar 

  30. Anjum MAR, Lee JS (2017) ACS Catal 7(4):3030–3038

    Article  CAS  Google Scholar 

  31. Zhang L, Yang Y, Ziaee MA, Lu K, Wang R (2018) ACS Appl Mater Interfaces 10(11):9460–9467

    Article  CAS  PubMed  Google Scholar 

  32. Xiao W, Zhang L, Bukhvalov D, Chen Z, Zou Z, Shang L, Yang X, Yan D, Han F, Zhang T (2020) Nano Energy 70:104445

    Article  CAS  Google Scholar 

  33. Zhao D, Sun K, Cheong WC, Zheng L, Zhang C, Liu S, Cao X, Wu K, Pan Y, Zhuang Z, Hu B, Wang D, Peng Q, Chen C, Li Y (2020) Angew Chem Int Ed Engl 59(23):8982–8990

    Article  CAS  PubMed  Google Scholar 

  34. Zhang X, Wu Z, Wang D (2018) Electrochim Acta 281:540–548

    Article  CAS  Google Scholar 

  35. Song H, Li Y, Shang L, Tang Z, Zhang T, Lu S (2020) Nano Energy 72:104730

    Article  CAS  Google Scholar 

  36. Pu Z, Amiinu IS, Zhang C, Wang M, Kou Z, Mu S (2017) Nanoscale 9(10):3555–3560

    Article  CAS  PubMed  Google Scholar 

  37. Pu Z, Amiinu IS, Liu X, Wang M, Mu S (2016) Nanoscale 8(39):17256–17261

    Article  CAS  PubMed  Google Scholar 

  38. Zhang F, He L, Lian S, Wang M, Chen X, Yin J, Pan H, Ren J, Chen M (2021) J Phys Chem C 125(35):19119–19130

    Article  Google Scholar 

  39. Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang J-Y, Lim KH, Wang X (2014) Energy Environ Sci 7(8):2624–2629

    Article  CAS  Google Scholar 

  40. Liang R, Wang Y, Qin C, Chen X, Ye Z, Zhu L (2021) Langmuir 37(11):3321–3330

    Article  CAS  PubMed  Google Scholar 

  41. Jiang X, Fuji M (2021) Catal Lett 24:1–9

    Google Scholar 

  42. Yang F, Liu D, Li Y, Ning S, Cheng L, Ye J (2021) Chem Eng J 406:126838

    Article  CAS  Google Scholar 

  43. Xiao F, Zhou W, Sun B, Li H, Qiao P, Ren L, Zhao X, Fu H (2018) Sci China Mater 61(6):822–830

    Article  CAS  Google Scholar 

  44. Cheng C, Zong S, Shi J, Xue F, Zhang Y, Guan X, Zheng B, Deng J, Guo L (2020) Appl Catal B 265:118620

    Article  CAS  Google Scholar 

  45. Tian Q, Yi S, Li C, Liu Y, Niu Z, Yue X, Liu Z (2021) Inorganic Chem Front 8(8):2017–2026

    Article  CAS  Google Scholar 

  46. Yue Q, Wan Y, Sun Z, Wu X, Yuan Y, Du P (2015) Journal of Mater Chem A 3(33):16941–16947

    Article  CAS  Google Scholar 

  47. Chen Y, Qin Z (2016) Catal Sci Technol 6(23):8212–8221

    Article  CAS  Google Scholar 

  48. Vijayalakshmi R, Rajendran V (2012) Arch Appl Sci Res 4(2):1183–1190

    CAS  Google Scholar 

  49. Li D, Zhen Y, Fu X (2000) Chin J Mater Res 14(6):639–642

    CAS  Google Scholar 

  50. Kato D, Hongo K, Maezono R, Higashi M, Kunioku H, Yabuuchi M, Suzuki H, Okajima H, Zhong C, Nakano K, Abe R, Kageyama H (2017) J Am Chem Soc 139(51):18725–18731

    Article  CAS  PubMed  Google Scholar 

  51. Kibsgaard J, Jaramillo TF (2014) Angew Chem Int Ed Engl 53(52):14433–14437

    Article  CAS  PubMed  Google Scholar 

  52. Jiao Y, Yan H, Wang R, Wang X, Zhang X, Wu A, Tian C, Jiang B, Fu H (2020) ACS Appl Mater Interfaces 12(44):49596–49606

    Article  CAS  PubMed  Google Scholar 

  53. Gao D, Yuan R, Fan J, Hong X, Yu H (2020) J Mater Sci Technol 56:122–132

    Article  Google Scholar 

Download references

Funding

This study was supported in part by the Hosokawa Powder Technology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Fuji.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Fuji, M. Facile Preparation of Nanosized MoP as Cocatalyst Coupled with TiO2 for Highly Efficient Photocatalytic H2 Production. Catal Lett 152, 3192–3201 (2022). https://doi.org/10.1007/s10562-021-03888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03888-y

Keywords

Navigation