Skip to main content

Advertisement

Log in

MgO(111) Nanocatalyst for Biomass Conversion: A Study of Carbon Coating Effects on Catalyst Faceting and Performance

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Solid base metal oxide catalysts such as MgO offer utility in a wide variety of syntheses from pharmaceuticals to fuels. The (111) facet of MgO shows enhanced, unique properties relative to the other facets. Carbon coatings have emerged as a promising modification to impart metal oxide catalyst stability. Here, we report the synthesis, characterization, and catalytic properties of commercial MgO, MgO(111), and carbon coated derivatives thereof for 2-pentanone condensation. The dimer and trimer products of this reaction can be used as precursors for biofuels upon oxygen removal and thus have relevance in environmental sustainability. MgO(111) maintained impressive selectivity towards the dimer product after carbon coating, whereas the other catalysts experienced a decrease in conversion and selectivity as a consequence of the carbon coating. Our findings highlight the catalytic efficacy of MgO(111), provide insight into carbon coating for catalyst stability, and pave the way for continued mechanistic investigations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vedrine JC (2017) Catalysts 7:341

    Article  Google Scholar 

  2. Cadigan CA, Corpuz AR, Lin F, Caskey CM, Finch KBH, Wang X, Richards RM (2013) Catal Sci Technol 3:900–911

    Article  CAS  Google Scholar 

  3. Sacia ER, Balakrishnan M, Deaner MH, Goulas KA, Toste FD, Bell AT (2015) Chemsuschem 8:1726–1736

    Article  CAS  Google Scholar 

  4. Pham HN, Anderson AE, Johnson RL, Schmidt-Rohr K, Datye AK (2012) Angewandte Chemie-International Edition 51:13163–13167

    Article  CAS  Google Scholar 

  5. Pham HN, Anderson AE, Johnson RL, Schwartz TJ, O’Neill BJ, Duan P, Schmidt-Rohr K, Dumesic JA, Datye AK (2015) ACS Catal 5:4546–4555

    Article  CAS  Google Scholar 

  6. Verziu M, Cojocaru B, Hu JC, Richards R, Ciuculescu C, Filip P, Parvulescu VI (2008) Green Chem 10:373–381

    Article  CAS  Google Scholar 

  7. Huo X, Conklin DR, Zhou M, Vorotnikov V, Assary RS, Purdy SC, Page K, Li Z, Unocic KA, Balderas RI, Richards RM, Vardon DR (2021) Appl Catal B 294:120234

    Article  CAS  Google Scholar 

  8. Thomele D (2021) Cryst Growth Design. 21:4674

    Article  CAS  Google Scholar 

  9. Wu LP, Moteki T, Gokhale AA, Flaherty DW, Toste FD (2016) Chemistry 1:32–58

    Article  CAS  Google Scholar 

  10. Zhu KK, Hu JC, Kubel C, Richards R (2006) Angewandte Chemie-International Edition 45:7277–7281

    Article  CAS  Google Scholar 

  11. Hu JC, Zhu K, Chen LF, Kubel C, Richards R (2007) J Phys Chem C 111:12038–12044

    Article  CAS  Google Scholar 

  12. Duan P, Cao XY, Pham H, Datye A, Schmidt-Rohr K (2018) Materials 11

  13. Neuefeind J, Feygenson M, Carruth J, Hoffmann R, Chipley KK (2012) Nuclear Instrum Methods Phys Res Sect B 287:68–75

    Article  CAS  Google Scholar 

  14. McDonnell MT, Olds DP, Pagel KL, Neufeindl JC, Tucker MG, Bilheux JC, Zhou W, Peterson PF (2017) Acta Crystallographica a-Foundation and Advances 73:A377–A377

    Google Scholar 

  15. Coelho AA (2018) J Appl Crystallogr 51:210–218

    Article  CAS  Google Scholar 

  16. Black DR, Windover D, Henins A, Gil D, Filliben J, Cline JP (2010) Powder Diffr 25:187–190

    Article  CAS  Google Scholar 

  17. Farrow CL, Juhas P, Liu JW, Bryndin D, Bozin ES, Bloch J, Proffen T, Billinge SJL (2007) J Phys 19:335219

    CAS  Google Scholar 

  18. Olds D, Saunders CN, Peters M, Proffen T, Neuefeinda J, Page K (2018) Acta Crystallographica A 74:293–307

    Article  CAS  Google Scholar 

  19. Mutch GA, Shulda S, McCue AJ, Menart MJ, Ciobanu CV, Ngo C, Anderson JA, Richards RM, Vega-Maza D (2018) J Am Chem Soc 140:4736–4742

    Article  CAS  Google Scholar 

  20. Hong J, Park MK, Lee EJ, Lee D, Hwang DS, Ryu S (2013) Sci Rep 3:1–5

    Google Scholar 

  21. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Phys Chem Chem Phys 9:1276–1291

    Article  CAS  Google Scholar 

  22. Liu L, Ryu SM, Tomasik MR, Stolyarova E, Jung N, Hybertsen MS, Steigerwald ML, Brus LE, Flynn GW (2008) Nano Lett 8:1965–1970

    Article  CAS  Google Scholar 

  23. Kodama K, Iikubo S, Taguchi T, Shamoto S (2006) Acta Crystallogr A 62:444–453

    Article  Google Scholar 

  24. Bartholomew CH (2001) Appl Catal A 212:17–60

    Article  CAS  Google Scholar 

  25. Schwach P, Frandsen W, Willinger MG, Schlogl R, Trunschke A (2015) J Catal 329:560–573

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Neutron diffraction and PDF modeling was partially supported through the U.S Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Early Career Research Program Award KC040602, under Contract DE-AC05-00OR22725. A portion of this research used the NOMAD instrument at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. The catalyst characterization via TEM was supported by the DOE/BES Catalysis Science Program, Grant DE-FG02-05ER15712. Acquisition of the electron microscope acquisition was supported by NSF Grant DMR-1828731. RMR, DV, BGT, AY, and RIB also acknowledge the Colorado Energy Collaboratory for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan M. Richards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1294 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balderas, R.I., Settle, A.E., York, A. et al. MgO(111) Nanocatalyst for Biomass Conversion: A Study of Carbon Coating Effects on Catalyst Faceting and Performance. Catal Lett 152, 3354–3364 (2022). https://doi.org/10.1007/s10562-021-03879-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03879-z

Keywords

Navigation