Skip to main content
Log in

Ru/SiO2 Catalyst for Highly Selective Hydrogenation of Dimethyl Malate to 1,2,4-Butanetriol at Low Temperatures in Aqueous Solvent

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic selective hydrogenation of esterified malic acid to produce 1,2,4-butanetriol (1,2,4-BT) using H2 as the reducing reagent suffers from the low 1,2,4-BT selectivity. Here, Ru/SiO2 catalyst was employed for selective hydrogenation of dimethyl malate (DM) to produce 1,2,4-BT, which gave abnormal high DM conversion (100%) and 1,2,4-BT selectivity (92.4%) in aqueous solvent at 363 K, especially, the 1,2,4-BT yield even is higher than the optimal catalyst reported (Ru-Re, 79.8%). The reaction pathways for the DM hydrogenation on Ru/SiO2 were also proposed, suggesting that extremely high 1,2,4-BT selectivity require for the much high hydrogenation rates at low temperatures, where side-reaction transesterification rates are relatively low. The extremely high hydrogenation activity and 1,2,4-BT selectivity on Ru/SiO2 in aqueous solvent at low temperatures arise from that H2O may coordinate to Ru2+ and prevent the reduction of Ru2+ to Ru under high H2 pressure. Ru/SiO2 surface presents abundant Ru2+ in aqueous solvent, can activate H2 through heterolytic cleavage mode to form hydride, which can significantly increase hydrogenation rates of C = O groups at low temperatures. In addition, the activity and 1,2,4-BT selectivity on Ru/SiO2 catalyst only reduced by 2.3% and 2.6%, respectively over a period of 550 h.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Niu W, Molefe MN, Frost JW (2003) Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J Am Chem Soc 125:12998–12999

    Article  CAS  Google Scholar 

  2. Wang D, Chen L, Li GC, Wang Z, Li XB, Hou B (2021) Cobalt-based Fischer-Tropsch synthesis: effect of the catalyst granule thermal conductivity on the catalytic performance. Mol Catal 502:111395

    Article  CAS  Google Scholar 

  3. Koevilein A, Kubisch C, Cai L, Ochsenreither K (2020) Malic acid production from renewables: a review. J Chem Technol Biotechnol 95:513–526

    Article  CAS  Google Scholar 

  4. Iyyappan J, Baskar G, Gnansounou E, Pandey A, Raaman JK, Bharathiraja B, Praveenkumar R (2019) Recent advances in microbial production of malic acid from renewable byproducts. Rev Environ Sci Bio-Technol 18:579–595

    Article  CAS  Google Scholar 

  5. Yu P, Chen C, Li GC, Wang Z, Li XB (2020) Active, selective, and recyclable Zr(SO4)2/SiO2 and Zr(SO4)2/activated carbon solid acid catalysts for esterification of malic acid to dimethyl malate. Catalysts 10(4):384

    Article  CAS  Google Scholar 

  6. Monteith MJ, Schofield D, Bailey M, Monteith M. Preparation of butane tri:ol derivatives-used as intermediates for pharmaceuticals and agrochemicals e.g. for antiviral compounds and platelet activating factors. WO9808793-A1

  7. Ikai K, Mikami M, Furukawa Y, Ho S, Urano T, Ohtaka S, Furkawa Y, Pu SB. Inexpensive preparation of 1,2,4-butanetriol by reducing e.g. malic diester, useful as intermediate for pharmaceuticals and agrochemicals. WO9944976-A1

  8. Adkins H, Billica HR (1948) The hydrogenation of esters to alcohols at 25-degrees-150-degrees. J Am Chem Soc 70:3121–3125

    Article  CAS  Google Scholar 

  9. Muller H, Mesch W, Broellos K, Mueller H. 1,2,4-Butane-tri:ol prodn.-by redn. of malic ester(s) with hydrogen over a copper-contg. Catalyst. DE3803581-A

  10. Antons S, Schulze Tilling A, Wolters E, Tilling AS. Preparation of optically active alcohols by hydrogenating optically active carboxylic acids. DE19803893-A1

  11. Balzhinimaev BS, Paukshtis EA, Suknev AP, Makolkin NV (2018) Highly selective/enantioselective Pt-ReOx/C catalyst for hydrogenation of L-malic acid at mild conditions. J Energy Chem 27:903–912

    Article  Google Scholar 

  12. Corbel-Demailly L, Bao-Khanh L, Doan-Pham M, Tapin B, Especel C, Epron F, Cabiac A, Guillon E, Besson M, Pinel C (2013) Heterogeneous catalytic hydrogenation of biobased levulinic and succinic acids in aqueous solutions. Chemsuschem 6:2388–2395

    Article  CAS  Google Scholar 

  13. Velisoju VK, Peddakasu GB, Gutta N, Boosa V, Kandula M, Chary KVR, Akula V (2018) Influence of support for Ru and water role on product selectivity in the vapor-phase hydrogenation of levulinic acid to γ-valerolactone: investigation by probe-adsorbed fourier transform infrared spectroscopy. J Phys Chem C 122:19670–19677

    Article  CAS  Google Scholar 

  14. Pritchard J, Filonenko GA, van Putten R, Hensen EJM, Pidko EA (2015) Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chem Soc Rev 44:3808–3833

    Article  CAS  Google Scholar 

  15. Seretis A, Diamantopoulou P, Thanou I, Tzevelekidis P, Fakas C, Lilas P, Papadogianakis G (2020) Recent advances in Ruthenium-catalyzed hydrogenation reactions of renewable biomass-derived levulinic acid in aqueous media. Front Chem 8:221

    Article  CAS  Google Scholar 

  16. Michel C, Zaffran J, Ruppert AM, Matras-Michalska J, Jedrzejczyk M, Grams J, Sautet P (2014) Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into γ-valerolactone. Chem Commun 50:12450–12453

    Article  CAS  Google Scholar 

  17. Delhomme C, Weuster-Botz D, Kuehn FE (2009) Succinic acid from renewable resources as a C-4 building-block chemical-a review of the catalytic possibilities in aqueous media. Green Chem 11:13–26

    Article  CAS  Google Scholar 

  18. Minh DP, Besson M, Pinel C, Fuertes P, Petitjean C (2010) Aqueous-phase hydrogenation of biomass-based succinic acid to 1,4-butanediol over supported bimetallic catalysts. Top Catal 53:1270–1273

    Article  CAS  Google Scholar 

  19. Tan J, Cui J, Deng T, Cui X, Ding G, Zhu Y, Li Y (2015) Water-promoted hydrogenation of levulinic acid to γ-valerolactone on supported Ruthenium catalyst. ChemCatChem 7:508–512

    Article  CAS  Google Scholar 

  20. Michel C, Gallezot P (2015) Why is Ruthenium an efficient catalyst for the aqueous-phase hydrogenation of biosourced carbonyl compounds? ACS Catal 5:4130–4132

    Article  CAS  Google Scholar 

  21. Mamun O, Saleheen M, Bond JQ, Heyden A (2019) Investigation of solvent effects in the hydrodeoxygenation of levulinic acid to γ-valerolactone over Ru catalysts. J Catal 379:164–179

    Article  CAS  Google Scholar 

  22. Sudhakar M, Kantam ML, Jaya VS, Kishore R, Ramanujachary KV, Venugopal A (2014) Hydroxyapatite as a novel support for Ru in the hydrogenation of levulinic acid to γ-valerolactone. Catal Commun 50:101–104

    Article  CAS  Google Scholar 

  23. Sudhakar M, Kumar VV, Naresh G, Kantam ML, Bhargava SK, Venugopal A (2016) Vapor phase hydrogenation of aqueous levulinic acid over hydroxyapatite supported metal (M = Pd, Pt, Ru, Cu, Ni) catalysts. Appl Catal B 180:113–120

    Article  CAS  Google Scholar 

  24. Gundekari S, Srinivasan K (2019) Hydrous ruthenium oxide: a new generation remarkable catalyst precursor for energy efficient and sustainable production of γ-valerolactone from levulinic acid in aqueous medium. Appl Catal A 569:117–125

    Article  CAS  Google Scholar 

  25. Guo Y, Li Y, Chen J, Chen L (2016) Hydrogenation of levulinic acid into γ-valerolactone over ruthenium catalysts supported on metal-organic frameworks in aqueous medium. Catal Lett 146:2041–2052

    Article  CAS  Google Scholar 

  26. Filiz BC, Gnanakumar ES, Martinez-Arias A, Gengler R, Rudolf P, Rothenberg G, Shiju NR (2017) Highly selective hydrogenation of levulinic acid to γ-valerolactone over Ru/ZrO2 catalysts. Catal Lett 147:1744–1753

    Article  Google Scholar 

  27. Ftouni J, Munoz-Murillo A, Goryachev A, Hofmann JP, Hensen EJM, Lu L, Kiely CJ, Bruijnincx PCA, Weckhuysen BM (2016) ZrO2 is preferred over TiO2 as support for the Ru-catalyzed hydrogenation of levulinic acid to γ-valerolactone. ACS Catal 6:5462–5472

    Article  CAS  Google Scholar 

  28. Wei Z, Li X, Deng J, Wang J, Li H, Wang Y (2018) Improved catalytic activity and stability for hydrogenation of levulinic acid by Ru/N-doped hierarchically porous carbon. Mol Catal 448:100–107

    Article  CAS  Google Scholar 

  29. Erdogan DA, Sevim M, Kisa E, Emiroglu DB, Karatok M, Vovk EI, Bjerring M, Akbey U, Metin O, Ozensoy E (2016) Photocatalytic activity of mesoporous graphitic carbon nitride (mpg-C3N4) towards organic chromophores under UV and Vis light illumination. Top Catal 59:1305–1318

    Article  CAS  Google Scholar 

  30. Sayan S, Suzer S, Uner DO (1997) XPS and in-situ IR investigation of Ru/SiO2 catalyst. J Mol Struct 410:111–114

    Article  Google Scholar 

  31. Aksoy M, Metin O (2020) Pt nanoparticles supported on mesoporous graphitic carbon nitride as catalysts for hydrolytic dehydrogenation of ammonia borane. ACS Appl Nano Mater 3:6836–6846

    Article  CAS  Google Scholar 

  32. Halpern J (1959) The catalytic activation of hydrogen in homogeneous, heterogeneous, and biological systems. Adv Catal 11:301–370

    CAS  Google Scholar 

  33. Qin R, Zhou L, Liu P, Gong Y, Liu K, Xu C, Zhao Y, Gu L, Fu G, Zheng N (2020) Alkali ions secure hydrides for catalytic hydrogenation. Nat Catal 3:703

    Article  CAS  Google Scholar 

  34. Stephan DW (2008) “Frustrated Lewis pairs”: a concept for new reactivity and catalysis. Org Biomol Chem 6:1535–1539

    Article  CAS  Google Scholar 

  35. Stephan DW (2009) Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. Dalton Trans. https://doi.org/10.1039/B819621D

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

All authors thank the financial supports from the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA 21060900), the Project of the National Natural Science Foundation of China (Grant Nos. 22102205 and 21808235), the Foundation of Shandong Energy Research Institute (SEI I202132), and the State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University, No. KF2020211).

Author information

Authors and Affiliations

Authors

Contributions

PY: investigation, visualization, writing—original draft, formal analysis; JJ: investigation, formal analysis; CC: investigation, validation; ZW: data curation, resources; DW: project administration; GL: formal analysis, supervision, writing—review and editing; XL: funding acquisition, conceptualization.

Corresponding authors

Correspondence to Guangci Li or Xuebing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 435 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Jiang, J., Chen, C. et al. Ru/SiO2 Catalyst for Highly Selective Hydrogenation of Dimethyl Malate to 1,2,4-Butanetriol at Low Temperatures in Aqueous Solvent. Catal Lett 152, 3046–3057 (2022). https://doi.org/10.1007/s10562-021-03877-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03877-1

Keywords

Navigation