Skip to main content

Advertisement

Log in

Hydrogen storage into monobenzyltoluene over Ru catalyst supported on SiO2-ZrO2 mixed oxides with different Si/Zr ratios

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Supported Ru catalysts have been often employed for hydrogen charge into liquid organic hydrogen carrier molecules (monobenzyltoluene in this work), and their catalytic performance largely depends upon physicochemical properties of the support materials. We prepared supported Ru catalysts on SiO2-ZrO2 with different Si/(Si+Zr) ratios ranging from 0 to 30mol% by loading Ru3(CO)12 onto Si,Zr-mixed metal hydroxide and subsequent thermolysis. The textural properties, Ru particle size, and hydrogenation activity of Ru/SiO2-ZrO2 catalysts show a volcano-shaped dependence on the content of Si added, where the maximum is achieved at the Si/(Si+Zr) ratio of 5 mol%. Up to this Si content the incorporation of Si into ZrO2 improves thermal stability and decreases the particle size of tetragonal ZrO2, resulting in a positive contribution to hydrogen storage efficiency. However, the further addition of Si increases surface heterogeneity and charge imbalance, and hence induces a decrease in the density of surface OH group reacting with Ru3(CO)12, which explains the lowered activity. Therefore, the addition of up to 5 mol% Si into ZrO2 is effective in enhancing the hydrogenation performance of Ru/ZrO2 owing to the improved textural properties and smaller Ru particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Geburtig, P. Preuster, A. Bösmann, K. Müller and P. Wasserscheid, Int. J. Hydrogen Energy, 41, 1010 (2016).

    CAS  Google Scholar 

  2. P. Preuster, C. Papp and P. Wasserscheid, Acc. Chem. Res., 50, 74 (2017).

    CAS  PubMed  Google Scholar 

  3. P. T. Aakko-Saksa, C. Cook, J. Kiviaho and T. Repo, J. Power Sources, 396, 803 (2018).

    CAS  Google Scholar 

  4. G. Sievi, D. Geburtig, T. Skeledzic, A. Bösmann, P. Preuster, O. Brummel, F. Waidhas, M. A. Montero, P. Khanipour, I. Katsounaros, J. Libuda, K. J. J. Mayrhofer and P. Wasserscheid, Energy Environ. Sci., 12, 2305 (2019).

    CAS  Google Scholar 

  5. K. Müller, S. Thiele and P. Wasserscheid, Energy Fuels, 33, 10324 (2019).

    Google Scholar 

  6. M. Markiewicz, Y. Q. Zhang, A. Bösmann, N. Brückner, J. Thöming, P. Wasserscheid and S. Stolte, Energy Environ. Sci., 8, 1035 (2015).

    CAS  Google Scholar 

  7. H. Jorschick, P. Preuster, S. Dürr, A. Seidel, K. Müller, A. Bösmann and P. Wasserscheid, Energy Environ. Sci., 10, 1652 (2017).

    CAS  Google Scholar 

  8. M. Niermann, S. Drünert, M. Kaltschmitt and K. Bonhoff, Energy Environ. Sci., 12, 290 (2019).

    CAS  Google Scholar 

  9. M. Niermann, A. Beckendorff, M. Kaltschmitt and K. Bonhoff, Int. J. Hydrogen Energy, 44, 6631 (2019).

    CAS  Google Scholar 

  10. P. M. Modisha, C. N. M. Ouma, R. Garidzirai, P. Wasserscheid and D. Bessarabov, Energy Fuels, 33, 2778 (2019).

    CAS  Google Scholar 

  11. N. Brückner, K. Obesser, A. Bösmann, D. Teichmann, W. Arlt, J. Dungs and P. Wasserscheid, ChemSusChem, 7, 229 (2014).

    PubMed  Google Scholar 

  12. A. Leinweber and K. Müller, Energy Technol., 6, 513 (2018).

    CAS  Google Scholar 

  13. T. W. Kim, S. H. Ko, M. Kim and Y.-W. Suh, Adv. Powder Technol., 31, 1682 (2020).

    CAS  Google Scholar 

  14. J. Oh, T. W. Kim, K. Jeong, J. H. Park and Y.-W. Suh, ChemCatChem, 10, 3892 (2018).

    CAS  Google Scholar 

  15. J. Oh, H. B. Bathula, J. H. Park and Y.-W. Suh, Commun. Chem, 2, 68 (2019).

    Google Scholar 

  16. F. Auer, D. Blaumeiser, T. Bauer, A. Bösmann, N. Szesni, J. Libuda and P. Wasserscheid, Catal. Sci. Technol., 9, 3537 (2019).

    CAS  Google Scholar 

  17. P. T. Aakko-Saksa, M. Vehkamäki, M. Kemell, L. Keskiväli, P. Simell, M. Reinikainen, U. Tapper and T. Repo, Chem. Commun., 56, 1657 (2020).

    CAS  Google Scholar 

  18. S. Dürr, M. Müller, H. Jorschick, M. Helmin, A. Bösmann, R. Palkovits and P. Wasserscheid, ChemSusChem, 10, 42 (2017).

    PubMed  Google Scholar 

  19. H. Jorschick, A. Bösmann, P. Preuster and P. Wasserscheid, ChemCatChem, 10, 4329 (2018).

    CAS  Google Scholar 

  20. H. Jorschick, A. Bulgarin, L. Alletsee, P. Preuster, A. Bösmann and P. Wasserscheid, ACS Sustainable Chem. Eng., 7, 4186 (2019).

    CAS  Google Scholar 

  21. H. Jorschick, M. Vogl, P. Preuster, A. Bösmann and P. Wasserscheid, Int. J. Hydrogen Energy, 44, 31172 (2019).

    CAS  Google Scholar 

  22. L. Li, M. Yang, Y. Dong, P. Mei and H. Cheng, Int. J. Hydrogen Energy, 41, 16129 (2016).

    CAS  Google Scholar 

  23. J. Oh, K. Jeong, T. W. Kim, H. Kwon, J. W. Han, J. H. Park and Y.-W. Suh, ChemSusChem, 11, 661 (2018).

    CAS  PubMed  Google Scholar 

  24. M. Jang, Y. S. Jo, W. J. Lee, B. S. Shin, H. Sohn, H. Jeong, S. C. Jang, S. K. Kwak, J. W. Kang and C. W. Yoon, ACS Sustainable Chem. Eng., 7, 1185 (2019).

    CAS  Google Scholar 

  25. J. Álvarez-Rodríguez, A. Guerrero-Ruiz, I. Rodríguez-Ramos and A. Arcoya-Martín, Catal. Today, 107–108, 302 (2005).

    Google Scholar 

  26. T. W. Kim, S. Park, J. Oh, C.-H. Shin and Y.-W. Suh, ChemCatChem, 10, 3406 (2018).

    CAS  Google Scholar 

  27. V. L. Kuznetsov, A. T. Bell and Y. I. Yermakov, J. Catal., 65, 374 (1980).

    CAS  Google Scholar 

  28. A. Zecchina, E. Guglielminotti, A. Bossi and M. Camia, J. Catal., 74, 225 (1982).

    CAS  Google Scholar 

  29. J. M. Basset and A. Choplin, J. Mol. Catal., 21, 95 (1983).

    CAS  Google Scholar 

  30. K. Asakura K.-K. Bando and Y. Iwasawa, J. Chem. Soc., Faraday Trans., 86(14), 2645 (1990).

    CAS  Google Scholar 

  31. K. Asakura and Y. Iwasawa, J. Chem. Soc., Faraday Trans., 86(14), 2657 (1990).

    CAS  Google Scholar 

  32. T. W. Kim, J. Oh and Y.-W. Suh, Appl. Catal. A: Gen., 547, 183 (2017).

    CAS  Google Scholar 

  33. T. Bhaskar, K. R. Reddy, C. P. Kumar, M. R. V. S. Murthy and K. V. R. Chary, Appl. Catal. A: Gen., 211, 189 (2001).

    CAS  Google Scholar 

  34. G. Zhou, X. Tan, Y. Pei, K. Fan, M. Qiao, B. Sun and B. Zong, ChemCatChem, 5, 2425 (2013).

    CAS  Google Scholar 

  35. D. Rao, X. Xue, G. Cui, S. He, M. Xu, W. Bing, S. Shi and M. Wei, Catal. Sci. Technol., 8, 236 (2018).

    CAS  Google Scholar 

  36. A. M. Ruppert, M. Niewiadomski, J. Grams and W. Kwapiñski, Appl. Catal. B: Environ., 145, 85 (2014).

    CAS  Google Scholar 

  37. E. Hong, C. Kim, D.-H. Lim, H.-J. Cho and C.-H. Shin, Appl. Catal. B: Environ., 232, 544 (2018).

    CAS  Google Scholar 

  38. H. J. M. Bosman, E. C. Kruissink, J. van der Spoel and F. van den Brink, J. Catal., 148, 660 (1994).

    CAS  Google Scholar 

  39. F. del Monte, W. Larsen and J. D. Mackenzie, J. Am. Ceram. Soc., 83(6), 1506 (2000).

    CAS  Google Scholar 

  40. D. H. Aguilar, L. C. Torres-Gonzalez, L. M. Torres-Martinez, T. Lopez and P. Quintana, J. Solid State Chem, 158, 349 (2000).

    Google Scholar 

  41. S. Pyen, E. Hong, M. Shin, Y.-W. Suh and C.-H. Shin, Mol. Catal., 448, 71 (2018).

    CAS  Google Scholar 

  42. L. Han, D. Mao, J. Yu, Q. Guo and G. Lu, Appl. Catal. A: Gen., 454, 81 (2013).

    CAS  Google Scholar 

  43. J. Gu, Z. Xin, M. Tao, Y. Lv, W. Gao and Q. Si, Appl. Catal. A: Gen., 575, 230 (2019).

    CAS  Google Scholar 

  44. G. K. Reddy, S. Loridant, A. Takahashi, P. Delichére and B. M. Reddy, Appl. Catal. A: Gen., 389, 92 (2010).

    CAS  Google Scholar 

  45. B. Stolze, J. Titus, S. A. Schunk, A. Milanov, E. Schwab and R. Gläser, Front. Chem. Sci. Eng., 10(2), 281 (2016).

    CAS  Google Scholar 

  46. X. Zhang, Q. Zhang, T. Wang, L. Ma, Y. Yu and L. Chen, Bioresour. Technol., 134, 73 (2013).

    PubMed  Google Scholar 

  47. S. Foraita, Y. Liu, G. L. Haller, E. Baráth, C. Zhao and J. A. Lercher, ChemCatChem, 9, 195 (2017).

    CAS  Google Scholar 

  48. G. Perera and R. H. Doremus, J. Am. Ceram. Soc., 74(7), 1554 (1991).

    CAS  Google Scholar 

  49. S. Sato, R. Takahashi, T. Sodesawa, S. Tanaka, K. Oguma and K. Ogura, J. Catal., 196, 190 (2000).

    CAS  Google Scholar 

  50. S. Damyanova, P. Grange and B. Delmon, J. Catal., 168, 421 (1997).

    CAS  Google Scholar 

  51. W. Wang, J. Zhou, D. Wei, H. Wan, S. Zheng, Z. Xu and D. Zhu, J. Colloid Interface Sci., 407, 442 (2013).

    CAS  PubMed  Google Scholar 

  52. T. Lopez, J. Navarrete, R. Gomez, O. Novaro, F. Figueras and H. Armendariz, Appl. Catal. A: Gen., 125, 217 (1995).

    CAS  Google Scholar 

  53. S. Kongwudthiti, P. Praserthdam, W. Tanakulrungsank and M. Inoue, J. Mater. Process. Technol., 136, 186 (2003).

    CAS  Google Scholar 

  54. Y. Kuwahara, W. Kaburagi, K. Nemoto and T. Fujitani, Appl. Catal. A: Gen., 476, 186 (2014).

    CAS  Google Scholar 

  55. G. Monrós, M. C. Martí, J. Carda, M. A. Tena, P. Escribano and M. Anglada, J. Mater. Sci., 28, 5852 (1993).

    Google Scholar 

  56. J. B. Miller and E. I. Ko, J. Catal., 159, 58 (1996).

    CAS  Google Scholar 

  57. F. del Monte, W. Larsen and J. D. Mackenzie, J. Am. Ceram. Soc., 83(3), 628 (2000).

    CAS  Google Scholar 

  58. V. S. Nagarajan and K. J. Rao, J. Mater. Sci., 24, 2140 (1989).

    CAS  Google Scholar 

  59. J. G. Goodwin Jr. and C. Naccache, Appl. Catal., 4, 145 (1982).

    CAS  Google Scholar 

  60. H. H. Lamb, B. C. Gates and H. Knözinger, Angew. Chem. Int. Ed. Engl., 27, 1127 (1988).

    Google Scholar 

  61. J.-W. Lee, S. Kong, W.-S. Kim and J. Kim, Mater. Chem. Phys., 106, 39 (2007).

    CAS  Google Scholar 

  62. C. Ren, W. Qiu and Y. Chen, Sep. Purif. Technol., 107, 264 (2013).

    CAS  Google Scholar 

  63. J.-H. Lee, C.-H. Shin and Y.-W. Suh, Mol. Catal., 438, 272 (2017).

    CAS  Google Scholar 

  64. C. Flego, L. Carluccio, C. Rizzo and C. Perego, Catal. Commun., 2, 43 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, Republic of Korea (NRF-2019M3E6A1064908), and by the Ministry of Education, Republic of Korea (NRF-2016R1A6A1 A03013422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Woong Suh.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2020_577_MOESM1_ESM.pdf

Hydrogen storage into monobenzyltoluene over Ru catalyst supported on SiO2-ZrO2 mixed oxides with different Si/Zr ratios

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.W., Kim, C., Jeong, H. et al. Hydrogen storage into monobenzyltoluene over Ru catalyst supported on SiO2-ZrO2 mixed oxides with different Si/Zr ratios. Korean J. Chem. Eng. 37, 1427–1435 (2020). https://doi.org/10.1007/s11814-020-0577-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0577-3

Keywords

Navigation