Skip to main content

Advertisement

Log in

A Cu3P@NiFe-MOF Hybrid as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

For hydrogen and oxygen evolution reactions, the price of precious metals and their long-time testing stability limit their range of use and increase the difficulty of commercialization. Thus, it is necessary to use non-noble metal materials with excellent activity and stability to replace noble metal materials as electrocatalysts. Herein, an efficient and durable electrocatalyst consisting of Cu3P@NiFe-MOF is synthesized by hydrothermal method. Specially, the as-prepared Cu3P@NiFe-MOF-4 delivery an overpotential of 226 mV at a current density of 10 mA cm−2, and it also has a very low Tafel slope and a high double layer capacitance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yue YJ, Zhu YM, Li F, Xue T (2021) Fabrication and characterization of controlled-morphology self-supported Fe/Co layered double hydroxides as catalysts for the oxygen evolution reaction. Catal Lett 151(2):507–516

    Article  CAS  Google Scholar 

  2. Chen R, Hung S-F, Zhou D, Gao J, Yang C, Tao H, Yang HB, Zhang L, Zhang L, Xiong Q, Chen HM, Liu B (2019) Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv Mater 31(41):1903909

    Article  CAS  Google Scholar 

  3. Mou QX, Xu ZH, Wang GN, Li EL, Liu JY, Zhao PP, Liu XH, Li HB, Cheng GZ (2021) A bimetal hierarchical layer structure MOF grown on Ni foam as a bifunctional catalyst for the OER and HER. Inorg Chem Front 8(11):2889–2899

    Article  CAS  Google Scholar 

  4. Ulleberg O (2003) Modeling of advanced alkaline electrolyzers: a system simulation approach. Int J Hydrogen Energy 28(1):21–33

    Article  CAS  Google Scholar 

  5. Shi Q, Zhu C, Du D, Lin Y (2019) Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem Soc Rev 48(12):3181–3192

    Article  PubMed  CAS  Google Scholar 

  6. Tachikawa T, Beniya A, Shigetoh K, Higashi S (2020) Relationship between OER activity and annealing temperature of sputter-deposited flat IrO2 thin films. Catal Lett 150(7):1976–1984

    Article  CAS  Google Scholar 

  7. Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H (2019) Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) functionality and design. Angew Chem Int Ed 58(43):15188–15205

    Article  CAS  Google Scholar 

  8. Cai X, Peng F, Luo X, Ye X, Zhou J, Lang X, Shi M (2021) Understanding the evolution of cobalt-based MOFs in electrocatalysis for OER. Chemsuschem 14:3163–3173

    Article  PubMed  CAS  Google Scholar 

  9. Xia W, Mahmood A, Zou R, Xu Q (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8(7):1837–1866

    Article  CAS  Google Scholar 

  10. Yang Z, Lin Y, Jiao FX, Li JH, Wang JL, Gong YQ (2020) In situ growth of 3D walnut-like nano -architecture Mo-Ni 2 P@NiFe LDH/NF arrays for synergistically enhanced overall water splitting. J Energy Chem 49:189–197

    Article  Google Scholar 

  11. Zhang W, Li DH, Zhang LZ, She XL, Yang DJ (2019) NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions. J Energy Chem 39:39–53

    Article  Google Scholar 

  12. Tang JR, Jiang XL, Tang L, Li Y, Zheng QJ, Huo Y, Lin DM (2021) Self-supported wire-in-plate NiFeS/CoS nanohybrids with a hierarchical structure for efficient overall water splitting. Dalton Trans 50(17):5921–5930

    Article  PubMed  CAS  Google Scholar 

  13. Tang JR, Jiang XL, Tang L, Li Y, Zheng QJ, Huo Y, Lin DM (2021) Ultrathin vanadium hydroxide nanosheets assembled on the surface of Ni-Fe-layered hydroxides as hierarchical catalysts for the oxygen evolution reaction. Dalton Trans 50(3):1053–1059

    Article  PubMed  CAS  Google Scholar 

  14. Tang C, Wang HS, Wang HF, Zhang Q, Tian GL, Nie JQ, Wei F (2015) Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv Mater 27(30):4516–4522

    Article  PubMed  CAS  Google Scholar 

  15. Feng Y, Jiang XL, Tang L, Lin DM, Huo Y, Xie FY, Zheng QJ (2021) Mn-doped NiFe layered double hydroxide nanosheets decorated by Co(OH)(2) nanosheets: A 3-dimensional core-shell catalyst for efficient oxygen evolution reaction. Catal Lett. https://doi.org/10.1007/s10562-021-03766-7

    Article  Google Scholar 

  16. Du Y, Ding X, Han M, Zhu M (2020) Morphology and composition regulation of FeCoNi Prussian blue analogues to advance in the catalytic performances of the derivative ternary transition-metal phosphides for OER. ChemCatChem 12(17):4339–4345

    Article  CAS  Google Scholar 

  17. Liang Q, Chen J, Wang F, Li Y (2020) Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord Chem Rev 424:213488

    Article  CAS  Google Scholar 

  18. Srinivas K, Chen Y, Wang X, Wang B, Karpuraranjith M, Wang W, Su Z, Zhang W, Yang D (2021) Constructing Ni/NiS heteronanoparticle-embedded metal-organic framework-derived nanosheets for enhanced water-splitting catalysis. ACS Sustain Chem Eng 9(4):1920–1931

    Article  CAS  Google Scholar 

  19. Fiaz M, Kashif M, Fatima M, Batool SR, Asghar MA, Shakeel M, Athar M (2020) Synthesis of efficient TMS@MOF-5 catalysts for oxygen evolution reaction. Catal Lett 150(9):2648–2659

    Article  CAS  Google Scholar 

  20. Liu X, Ni K, Wen B, Guo RT, Niu CJ, Meng JS, Li Q, Wu PJ, Zhu YW, Wu XJ, Mai LQ (2019) Deep reconstruction of nickel-based precatalysts for water oxidation catalysis. ACS Energy Lett 4(11):2585–2592

    Article  CAS  Google Scholar 

  21. Zhao PP, Nie HQ, Zhou ZR, Wang JB, Cheng GZ (2018) NiFe-LDH grown on three-dimensional Cu3P nano-array for highly efficient water oxidation. ChemistrySelect 3(28):8064–8069

    Article  CAS  Google Scholar 

  22. Yang L, Liu RM, Jiao LF (2020) Electronic redistribution: construction and modulation of interface engineering on CoP for enhancing overall water splitting. Adv Funct Mater 30(14):1909618

    Article  CAS  Google Scholar 

  23. Wang Z, Zeng S, Liu W, Wang X, Li Q, Zhao Z, Geng F (2017) Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Appl Mater Interfaces 9(2):1488–1495

    Article  PubMed  CAS  Google Scholar 

  24. Huang C, Zhong Y, Chen J, Li J, Zhang W, Zhou J, Zhang Y, Yu L, Yu Y (2021) Fe induced nanostructure reorganization and electronic structure modulation over CoNi (oxy)hydroxide nanorod arrays for boosting oxygen evolution reaction. Chem Eng J 403:126304

    Article  CAS  Google Scholar 

  25. Li JT, Chu D, Dong H, Baker DR, Jiang RZ (2019) Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides. J Am Chem Soc 142(1):50–54

    Article  PubMed  Google Scholar 

  26. Cai Z, Li L, Zhang Y, Yang Z, Yang J, Guo Y, Guo L (2019) Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution. Angew Chem Int Ed 58(13):4189–4194

    Article  CAS  Google Scholar 

  27. Li X, Xiao L, Zhou L, Xu Q, Weng J, Xu J, Liu B (2020) Adaptive bifunctional electrocatalyst of amorphous CoFe oxide @ 2D black phosphorus for overall water splitting. Angew Chem Int Ed 59(47):21106–21113

    Article  CAS  Google Scholar 

  28. Xiao X, Huang D, Fu Y, Wen M, Jiang X, Lv X, Li M, Gao L, Liu S, Wang M, Zhao C, Shen Y (2018) Engineering NiS/Ni2P heterostructures for efficient electrocatalytic water splitting. ACS Appl Mater Interfaces 10(5):4689–4696

    Article  PubMed  CAS  Google Scholar 

  29. Wan K, Luo J, Zhou C, Zhang T, Arbiol J, Lu X, Mao BW, Zhang X, Fransaer J (2019) Hierarchical porous Ni3S4 with enriched high-valence Ni sites as a robust electrocatalyst for efficient oxygen evolution reaction. Adv Funct Mater 29(18):1900315

    Article  Google Scholar 

  30. Du X, Yang Z, Li Y, Gong Y, Zhao M (2018) Controlled synthesis of Ni(OH)2/Ni3S2 hybrid nanosheet arrays as highly active and stable electrocatalysts for water splitting. J Mater Chem A 6(16):6938–6946

    Article  CAS  Google Scholar 

  31. Kou TY, Wang SW, Hauser JL, Chen MP, Oliver SRJ, Ye YF, Guo JH, Li Y (2019) Ni Foam-supported Fe-doped β-Ni(OH)2 nanosheets show ultralow overpotential for oxygen evolution reaction. ACS Energy Lett 4(3):622–628

    Article  CAS  Google Scholar 

  32. Kuai CG, Zhang Y, Wu DY, Sokaras D, Mu LQ, Spence S, Nordlund D, Lin F, Du X-W (2019) Fully oxidized Ni–Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction. ACS Catal 9(7):6027–6032

    Article  CAS  Google Scholar 

  33. Sreekanth TVM, Dillip GR, Nagajyothi PC, Yoo K, Kim J (2021) Integration of Marigold 3D flower-like Ni-MOF self-assembled on MWCNTs via microwave irradiation for high-performance electrocatalytic alcohol oxidation and oxygen evolution reactions. Appl Catal B-Environ 285:119793

    Article  CAS  Google Scholar 

  34. Chen G, Zhu Y, Chen HM, Hu Z, Hung SF, Ma N, Dai J, Lin HJ, Chen CT, Zhou W, Shao Z (2019) An amorphous nickel-iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Adv Mater 31(28):e1900883

    Article  PubMed  Google Scholar 

  35. Chen C, Tuo Y, Lu Q, Lu H, Zhang S, Zhou Y, Zhang J, Liu Z, Kang Z, Feng X, Chen D (2021) Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Appl Catal B-Environ 287:119953

    Article  CAS  Google Scholar 

  36. Guan J, Li C, Zhao J, Yang Y, Zhou W, Wang Y, Li G-R (2020) FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting. Appl Catal B-Environ 269:118600

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (2042021kf0077), Start-up funds for provincial and municipal “double first-class” construction special talents (600460001) as well as China Postdoctoral Science Foundation (2017M612496).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingping Zhao or Houbin Li.

Ethics declarations

Conflict of interest

None of authors have any confict of interest to be declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, E., Mou, Q., Xu, Z. et al. A Cu3P@NiFe-MOF Hybrid as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution Reactions. Catal Lett 152, 3825–3832 (2022). https://doi.org/10.1007/s10562-021-03865-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03865-5

Keywords

Navigation