Skip to main content

Advertisement

Log in

In-Situ Photodeposition of Highly Dispersed MoSx as a Co-catalyst on TiO2 Nanoparticles for Efficient and Stable Photocatalytic H2 Evolution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The development of new and efficient non-precious metal electronic additives is of great significance for the photocatalytic decomposition of water to produce hydrogen. Molybdenum sulfide is the most promising electronic assistant to replace the precious metal Pt. However, its weak electrical conductivity and rare unsaturated S atom active sites severely restrict the improvement of the photocatalytic hydrogen production efficiency. In this study, an amorphous molybdenum sulfide electronic promoter modified TiO2 (TiO2/a-MoSx) photocatalytic material was synthesized by the in-situ adsorption-photodeposition conversion method, aiming to improve the photocatalytic hydrogen production performance of semiconductor materials. The results of the photocatalysis experiments showed that, compared to pure TiO2 and a-MoSx photocatalysts, the TiO2/a-MoSx photocatalytic materials had a significantly improved photocatalytic hydrogen production performance, while TiO2/a-MoSx-8p photocatalysts had the best photocatalytic hydrogen production activity. The hydrogen evolution efficiency reached 35.2 mmol g−1 within two hours. At the same time, the analysis of the hydrogen production performance of four cycles showed that it had a good stability. The characterization results showed that the a-MoSx cocatalyst can not only increase the specific surface area of the catalyst and provide more active sites, but also effectively capture the photogenerated electrons of TiO2, thereby greatly improving the separation efficiency of the photogenerated charges and enhancing the catalytic activity. Therefore, this study provides a simple and effective strategy for the design of high-performance a-MoSx-based cocatalysts to stably carry out in-situ photocatalytic H2 release.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2.

Similar content being viewed by others

References

  1. Wang Q, Huang J, Sun H, Zhang KQ, Lai Y (2017) Nanoscale 9(41):16046–16058

    Article  CAS  Google Scholar 

  2. Bhunia MK, Melissen S, Parida MR, Sarawade P, Basset J-M, Anjum DH, Mohammed OF, Sautet P, Le Bahers T, Takanabe K (2015) Chem Mater 27(24):8237–8247

    Article  CAS  Google Scholar 

  3. Song J, Huang Z-F, Pan L, Zou J-J, Zhang X, Wang L (2015) ACS Catal 5(11):6594–6599

    Article  CAS  Google Scholar 

  4. Liu J (2015) J Phys Chem C 119(51):28417–28423

    Article  CAS  Google Scholar 

  5. Li K, Gao S, Wang Q, Xu H, Wang Z, Huang B, Dai Y, Lu J (2015) ACS Appl Mater Interfaces 7(17):9023–9030

    Article  CAS  Google Scholar 

  6. Zhou X, Shao C, Yang S, Li X, Guo X, Wang X, Li X, Liu Y (2018) ACS Sustain Chem Eng 6(2):2316–2323

    Article  CAS  Google Scholar 

  7. Ansari SA, Khan MM, Ansari MO, Cho MH (2016) New J Chem 40(4):3000–3009

    Article  CAS  Google Scholar 

  8. Chen M, Guo C, Hou S, Wu L, Lv J, Hu C, Zhang Y, Xu J (2019) J Hazard Mater 366:219–228

    Article  CAS  Google Scholar 

  9. Yu H, Cao G, Chen F, Wang X, Yu J, Lei M (2014) Appl Catal B 160–161:658–665

    Article  CAS  Google Scholar 

  10. Yan X, Tian L, He M, Chen X (2015) Nano Lett 15(9):6015–6021

    Article  CAS  Google Scholar 

  11. Wang J, Mao S, Liu Z, Wei Z, Wang H, Chen Y, Wang Y (2017) ACS Appl Mater Interfaces 9(8):7139–7147

    Article  CAS  Google Scholar 

  12. He H, Lin J, Fu W, Wang X, Wang H, Zeng Q, Gu Q, Li Y, Yan C, Tay BK, Xue C, Hu X, Pantelides ST, Zhou W, Liu Z (2016) Adv Energy Mater 6(14):24

    Google Scholar 

  13. Liu X, Xing Z, Zhang H, Wang W, Zhang Y, Li Z, Wu X, Yu X, Zhou W (2016) Chemsuschem 9(10):1118–1124

    Article  CAS  Google Scholar 

  14. Wang H, Xiao X, Liu S, Chiang CL, Kuai X, Peng CK, Lin YC, Meng X, Zhao J, Choi J, Lin YG, Lee JM, Gao L (2019) J Am Chem Soc 141(46):18578–18584

    Article  CAS  Google Scholar 

  15. Chang K, Li M, Wang T, Ouyang S, Li P, Liu L, Ye J (2015) Adv Energy Mater 5(10):7078–7087

    Article  CAS  Google Scholar 

  16. Chang YH, Lin CT, Chen TY, Hsu CL, Lee YH, Zhang W, Wei KH, Li LJ (2013) Adv Mater 25(5):756–760

    Article  CAS  Google Scholar 

  17. Hou Y, Laursen AB, Zhang J, Zhang G, Zhu Y, Wang X, Dahl S, Chorkendorff I (2013) Angew Chem Int Ed Engl 52(13):3621–3625

    Article  CAS  Google Scholar 

  18. Yu H, Yuan R, Gao D, Xu Y, Yu J (2019) Chem Eng J 375:361–375

    Google Scholar 

  19. Ghosh S, Azad UP, Singh AK, Singh AK, Prakash R (2017) ChemistrySelect 2(35):11590–11598

    Article  CAS  Google Scholar 

  20. Liu X, Xing Z, Zhang Y, Li Z, Wu X, Tan S, Yu X, Zhu Q, Zhou W (2017) Appl Catal B 201:119–127

    Article  CAS  Google Scholar 

  21. Tillmann W, Wittig A, Stangier D, Thomann C-A, Moldenhauer H, Debus J, Aurich D, Brümmer A (2019) Lubricants 7(11):100

    Article  Google Scholar 

  22. Liu Y, Xu C, Xie Y, Yang L, Ling Y, Chen L (2020) J Alloys Compd 820:153440

    Article  CAS  Google Scholar 

  23. Komba N, Zhang G, Pu Z, Wu M, Rosei F, Sun S (2020) Int J Hydrogen Energy 45(7):4468–4480

    Article  CAS  Google Scholar 

  24. He J, Zhong W, Xu Y, Fan J, Yu H, Yu J (2021) J Mater Chem C 20(10):1858–1867

    Google Scholar 

  25. Lee C-H, Lee S, Kang G-S, Lee Y-K, Park GG, Lee DC, Joh H-I (2019) Appl Catal B 258:117995

    Article  CAS  Google Scholar 

  26. Xu Y, Li Y, Wang P, Wang X, Yu H (2018) Appl Surf Sci 430:176–183

    Article  CAS  Google Scholar 

  27. Xue Y, Min S, Meng J, Liu X, Lei Y, Tian L, Wang F (2019) Int J Hydrogen Energy 44(16):8133–8143

    Article  CAS  Google Scholar 

  28. Zhu J, Xu J, Du X, Li Q, Fu Y, Chen M (2020) Dalton Trans 49(26):8891–8900

    Article  CAS  Google Scholar 

  29. Yu Y, Wan J, Yang Z, Hu Z (2017) J Colloid Interface Sci 502:100–111

    Article  CAS  Google Scholar 

  30. Zhou H, Wang L, Shi H, Zhang H, Wang Y, Bai S, Yang Y, Li Y, Zhang T, Zhang H (2021) New J Chem 45(31):14167–14176

    Article  CAS  Google Scholar 

  31. Li X, Tang C, Zheng Q, Shao Y, Li D (2017) J Solid State Chem 246:230–236

    Article  CAS  Google Scholar 

  32. Liu X, Min S, Xue Y, Lei Y, Chen Y, Wang F, Zhang Z (2019) Renewable Energy 138:562–572

    Article  CAS  Google Scholar 

  33. Gao D, Yuan R, Fan J, Hong X, Yu H (2020) J Mater Sci Technol 56:122–132

    Article  Google Scholar 

Download references

Funding

This study was supported in part by the Hosokawa Powder Technology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxin Jiang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2537 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Fuji, M. In-Situ Photodeposition of Highly Dispersed MoSx as a Co-catalyst on TiO2 Nanoparticles for Efficient and Stable Photocatalytic H2 Evolution. Catal Lett 152, 2247–2255 (2022). https://doi.org/10.1007/s10562-021-03807-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03807-1

Keywords

Navigation