Skip to main content
Log in

Carbon–Carbon Bond Formation for the Synthesis of 5-Aryl-2-Substituted Furans Catalyzed by K3[Fe(CN)6]

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An efficient method for the carbon–carbon bond formation at C-5 position of 2-substituted furans to provide a range of π-diverse 5-aryl-2-substituted furan derivatives in 58–80% yield has been reported. The method employs several advantages such as use of catalytic amount of K3[Fe(CN)6] under mild conditions and short reaction time with high yields. Also, a variety of anilines with a variety of functional groups can be employed for the synthesis of 5-aryl-2-substituted furans.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  1. Furstner A, Leitner A, Mendez M, Krause H (2002) J Am Chem Soc 124:13856–13863

    Article  CAS  Google Scholar 

  2. Chaturbhuj GU, Akamanchi KG (2011) Tet Lett 52:4950–4953

    Article  CAS  Google Scholar 

  3. Obushak MD, Lyakhovich MB, Bilaya EE (2002) Rus J Org Chem 38:38–46

    Article  CAS  Google Scholar 

  4. Biffis A, Centomo P, Zotto AD, Zecca M (2018) Chem Rev 118:2249–2295

    Article  CAS  Google Scholar 

  5. Ambika, Singh PP (2021) Curr Org Chem 24:332–350

    Article  CAS  Google Scholar 

  6. Piber M, Jensen AE, Rottlander M, Knochel P (1999) Org Lett 1:1323–1326

    Article  CAS  Google Scholar 

  7. Riveiros R, Saya L, Sestelo JP, Sarandeses LA (2008) Eur J Org Chem 2008:1959–1966

    Article  CAS  Google Scholar 

  8. Tobisu M, Shimasaki T, Chatani N (2008) Angew Chem Int Ed 47:4866–4869

    Article  CAS  Google Scholar 

  9. Domenico T, Maria Rita M, Francesco C, Mariateresa C, Simona P, Antonella S (2005) Toxicol Lett 159:219–225

    Article  CAS  Google Scholar 

  10. Kielhorn J, Melber C, Keller D, Mangelsdorf I (2002) Int J Hyg Env Heal 205:417–432

    Article  CAS  Google Scholar 

  11. Bolm C, Legros J, Paih JL, Zani L (2004) Chem Rev 104:6217–6254

    Article  CAS  Google Scholar 

  12. Miyaura N, Suzuki A (1995) Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  13. Sharpless KB, Amberg W, Bennani YL, Crispino GA, Hartung J, Jeong KS, Kwong HL, Morikawa K, Wang ZM, Xu D, Zhang XL (1992) J Org Chem 57:2768–2771

    Article  CAS  Google Scholar 

  14. Feringa B, Wynberg H (1981) J Org Chem 46:2547–2557

    Article  CAS  Google Scholar 

  15. Kocienski PJ, Ansell JM, Norcross BE (1976) J Org Chem 41:3650–3651

    Article  CAS  Google Scholar 

  16. Bussolari JC, Rehborn DC (1999) Org Lett 7:965–967

    Article  CAS  Google Scholar 

  17. Racane L, Tralic V, David K, Boykin W, Zamola GK (2003) Molecules 8:342–348

    Article  CAS  Google Scholar 

  18. Gauthier DR Jr, Szumigala RH Jr, Dormer PG, Armstrong JD III, Volante RP, Reider PJ (2001) Org Lett 3:375–378

    Google Scholar 

  19. Obushak MD, Lyakhovich MB, Ganushchak MI (1998) Tet Lett 39:9567–9570

    Article  CAS  Google Scholar 

  20. Obushak MD, Lyakhovich MB, Bilaya EE (2002) Russ J Org Chem 38:38–46

    Article  CAS  Google Scholar 

  21. Gorak YI, Obushak ND, Matiichuk VS, Lytvyn RZ (2009) Rus J Org Chem 45:541–550

    Article  CAS  Google Scholar 

  22. Huang G, Lu L, Jiang H, Yin B (2017) Chem Commun 53:12217–12220

    Article  CAS  Google Scholar 

  23. Sasmal A, Roisnel T, Bera JK, Doucet H, Soule JF (2019) Synthesis 51:3241–3249

    Article  CAS  Google Scholar 

  24. Hu P, Zhang M, Jie X, Su W (2012) Angew Chem Int Ed 51:227–231

    Article  CAS  Google Scholar 

  25. Juwaini NAB, Ng JKP, Seayad J (2012) ACS Catal 2:1787–1791

    Article  CAS  Google Scholar 

  26. Crisostomo FP, Martin T, Carrillo R (2014) Angew Chem Int Ed 53:2181–2185

    Article  CAS  Google Scholar 

  27. Colas C, Goeldner M (1999) Eur J Org Chem 1999:1357–1366

    Article  Google Scholar 

  28. Youn SW, Bihn JH, Kim BS (2011) Org Lett 13:3738–3741

    Article  CAS  Google Scholar 

  29. Hagui W, Soule JF (2020) J Org Chem 85:3655–3663

    Article  CAS  Google Scholar 

  30. Hata D, Moriuchi T, Hirao T, Amaya T (2017) Chem Eur J 23:7703–7709

    Article  CAS  Google Scholar 

  31. Hosoya T, Aoyama H, Ikemoto T, Kihara Y, Hiramatsu T, Endo M, Suzuki M (2003) Bioorg Med Chem 11:663–673

    Article  CAS  Google Scholar 

  32. Mori M, Stelitano G, Gelain A, Pini E, Chiarelli LR, Sammartino JC, Poli G, Tuccinardi T, Beretta G, Porta A, Bellinzoni M, Villa S, Meneghetti F (2020) J Med Chem 63:7066–7080

    Article  CAS  Google Scholar 

  33. Itahara T (1985) J Org Chem 50:5272–5275

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Swami Shraddhanand College and Hansraj College for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Pratap Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambika, Singh, P.P. Carbon–Carbon Bond Formation for the Synthesis of 5-Aryl-2-Substituted Furans Catalyzed by K3[Fe(CN)6]. Catal Lett 152, 2288–2292 (2022). https://doi.org/10.1007/s10562-021-03799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03799-y

Keywords

Navigation