Skip to main content
Log in

High-Performance Pd/AC Catalyst for Meropenem Synthesis Based on Selective Surface Modification of Activated Carbon

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Activated carbon (AC) was treated with nitric acid, hydrogen peroxide, and urea. The obtained products were then used as supports for the preparation of palladium/activated carbon (Pd/AC) catalysts. The characterization results revealed that the AC textural structure and surface properties were selectively modified via different treatments, and the surface functional groups of the supports could affect the particle size, dispersion, and chemical states of the Pd nanoparticles. The surface of the urea-treated AC (AC-U) contained more carbonylic groups and nitrogenous species but fewer hydroxylic and carboxylic groups than the surfaces of the ACs subjected to other treatments. Consequently, in the hydrogenation synthesis of meropenem, the Pd/AC-U catalyst provided a higher meropenem yield and lower amounts of impurities in the meropenem product than the other catalysts. The nitrogenous groups not only provided efficient anchoring sites for Pd nanoparticles, improving the reaction activity, but also reduced the side reactions, decreasing the impurity content in the product.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Huang L, Haagensen J, Verotta D, Lizak P, Aweeka F, Yang K (2014) J Chromatogr B 961:71–76

    Article  CAS  Google Scholar 

  2. Fish DN, Singletary TJ (1997) Pharmacotherapy 17:644–669

    CAS  PubMed  Google Scholar 

  3. Shih DH, Cama L, Christensen BG (1985) Tetrahedron Lett 26:587–590

    Article  CAS  Google Scholar 

  4. Prashad AS, Vlahos N, Fabio P, Feigelson GB (1998) Tetrahedron Lett 39:7035–7038

    Article  CAS  Google Scholar 

  5. Khemka AA, Shejul PB, Vyavahare AV, Pandey DK, Shete SN, Jadhav HK, Kadam NH (2012) US8097719 B2

  6. Tewari N, Meeran HNP, Rai BP, Kumar Y (2006) WO2006035300 A2

  7. Zhang H (2007) WO2007104221 A1

  8. Tewari N, Nizar H, Rai BP, Singh SK, George V, Prasad M (2007) Org Process Res Dev 11:773–775

    Article  CAS  Google Scholar 

  9. Mendeza A, Chagastelles P, Palma E, Nardi N, Schapoval E (2008) Int J Pharm 350:95–102

    Article  CAS  Google Scholar 

  10. Li X, Pan Z, Li M, Jia X, Zhang S, Lin H, Liu J, Ma L (2020) Anal Methods 12:3645–3653

    Article  CAS  PubMed  Google Scholar 

  11. Cai S, Hu C (2005) J Pharm Biomed Anal 37:585–589

    Article  CAS  PubMed  Google Scholar 

  12. Choi S, Lee B, Yoon H, Park S, Jun S, Lee K, Lim B (2016) US9328115 B2

  13. Grigori K, Loukas YL, Malenovic A, Samara V, Kalaskani A, Dimovasili E, Kalovidouri M, Dotsikas Y (2017) J Pharm Biomed Anal 145:307–314

    Article  CAS  PubMed  Google Scholar 

  14. Barbosa FS, Pezzi LC, Tsao M, Macedo SMD, Oliveira TF, Schapoval EES, Mendez ASL (2020) J Pharm Biomed Anal 179:112973

    Article  CAS  Google Scholar 

  15. Cabiac A, Delahay G, Durand R, Trens P, Coq B, Plee D (2007) Carbon 45:3–10

    Article  CAS  Google Scholar 

  16. Ruiz-Garcia C, Heras F, Calvo L, Alonso-Morales N, Rodriguez JJ, Gilarranz MA (2020) J Environ Chem Eng 8:103689

    Article  CAS  Google Scholar 

  17. Lee S, Jeong H, Chung Y (2018) J Catal 365:125–137

    Article  CAS  Google Scholar 

  18. Shinde VM, Skupien E, Makkee M (2015) Catal Sci Technol 5:4144–4153

    Article  CAS  Google Scholar 

  19. Baek J, Kim J, Moon M, Lee M (2015) J Nanosci Nanotechnol 15:5314–5317

    Article  CAS  PubMed  Google Scholar 

  20. Ruiz-García C, Heras F, Alonso-Morales N, Calvo L, Rodriguez JJ, Gilarranz MA (2018) Catal Sci Technol 8:2598–2605

    Article  Google Scholar 

  21. Gu Y, Li Y, Zhang J, Zhang H, Wu C, Lin J, Zhou J, Fan Y, Murugadoss V, Guo Z (2020) Chem Eng Sci 216:115588

    Article  CAS  Google Scholar 

  22. An N, Zhang M, Zhang Z, Dai Y, Shen Y, Tang C, Yuan X, Zhou W (2018) J Colloid Interface Sci 510:181–189

    Article  CAS  PubMed  Google Scholar 

  23. Calvo L, Gilarranz MA, Casas JA, Mohedano AF, Rodríguez J (2006) J Appl Catal B: Environ 67:68–76

    Article  CAS  Google Scholar 

  24. Zhang M, Shi J, Sun Y, Ning W, Hou Z (2015) Catal Commun 70:72–76

    Article  CAS  Google Scholar 

  25. Xu X, Li H, Wang Y (2014) ChemCatChem 6:3328–3332

    Article  CAS  Google Scholar 

  26. Podyacheva OY, Bulushev DA, Suboch AN, Svintsitskiy DA, Lisitsyn AS, Modin E, Chuvilin A, Gerasimov EY, Sobolev VI, Parmon VN (2018) Chemsuschem 11:3724–3727

    Article  CAS  PubMed  Google Scholar 

  27. Wang S, Zhou P, Jiang L, Zhang Z, Deng K, Zhang Y, Zhao Y, Li J, Bottle SH, Zhu H (2018) J Catal 368:207–216

    Article  CAS  Google Scholar 

  28. Li Z, Li J, Liu J, Zhao Z, Xia C, Li F (2014) ChemCatChem 6:1333–1339

    CAS  Google Scholar 

  29. Boehm HP (1994) Carbon 32:759–769

    Article  CAS  Google Scholar 

  30. Tamon H, Okazaki M (1996) Carbon 34:741–746

    Article  CAS  Google Scholar 

  31. U. S. Pharmacopoeia (2017) USP40-NF35. pp 5024–5025

  32. Moreno-castilla C, Carrasco-marín F, Maldonado-hódar FJ, Rivera-utrilla J (1998) Carbon 36:145–151

    Article  CAS  Google Scholar 

  33. Cordero T, Rodriguez-Mirasol J, Tancredi N, Piriz J, Vivo G, Rodriguez JJ (2002) Ind Eng Chem Res 41:6042–6048

    Article  CAS  Google Scholar 

  34. Song X, Liu H, Cheng L, Qu Y (2010) Desalination 255:78–83

    Article  CAS  Google Scholar 

  35. Bashkova S, Bandosz TJ (2009) J Colloid Interface Sci 333:97–103

    Article  CAS  PubMed  Google Scholar 

  36. Stavropoulos GG, Samaras P, Sakellaropoulos GP (2008) J Hazard Mater 151:414–421

    Article  CAS  PubMed  Google Scholar 

  37. Darmstadt H, Roy C, Kaliaguine S, Choi SJ, Ryoo R (2002) Carbon 40:2673–2683

    Article  CAS  Google Scholar 

  38. D’Archivio AA, Maggi MA, Odoardi A, Santucci S, Passacantando M (2018) Nanotechnol 29:065701

    Article  CAS  Google Scholar 

  39. Serwar M, AliRana U, Siddiqi HM, Khan SU, Ali FAA, Al-Fatesh A, Adomkevicius A, Coca-Clemente JA, Cabo-Fernandez L, Braga F, Hardwick LJ (2017) RSC Adv 7:54626–54637

    Article  CAS  Google Scholar 

  40. Omidvar A, Jaleh B, Nasrollahzadeh M (2017) J Colloid Interface Sci 496:44–50

    Article  CAS  PubMed  Google Scholar 

  41. Su R, Dimitratos N, Liu J, Carter E, Althahban S, Wang X, Shen Y, Wendt S, Wen X, Niemantsverdriet JW, Iversen BB, Kiely CJ, Hutchings GJ, Besenbacher F (2016) ACS Catal 6:4239–4247

    Article  CAS  Google Scholar 

  42. Cheng N, Lv H, Wang W, Mua S, Pan M, Marken F (2010) J Power Sour 195:7246–7249

    Article  CAS  Google Scholar 

  43. Wei Z, Pan R, Hou Y, Yang Y, Liu Y (2015) Sci Rep 5:15664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Müller L, Mauthe RJ, Riley CM, Andino MM, Antonis DD, Beels C, DeGeorge J, Knaep AGMD, Ellison D, Fagerland JA, Frank R, Fritschel B, Galloway S, Harpur E, Humfrey CDN, Jacks AS, Jagota N, Mackinnon J, Mohan G, Ness DK, O’Donovan MR, Smith MD, Vudathala G, Yotti L (2006) Regul Toxicol Pharm 44:198–211

    Article  CAS  Google Scholar 

  45. Takeuchi Y, Sunagawa M, Isobe Y, Hamazume Y, Noguchi T (1995) Chem Pharm Bull 43:689–692

    Article  CAS  Google Scholar 

  46. Nadgeri JM, Telkar MM, Rode CV (2008) Catal Comm 9:441–446

    Article  CAS  Google Scholar 

  47. Di L, Zhang J, Craven M, Wang Y, Wang H, Zhang X, Tu X (2020) Catal Sci Technol 10:6129–6138

    Article  CAS  Google Scholar 

  48. Baeza JA, Calvo L, Rodriguez JJ, Gilarranz MA (2016) Chem Eng J 294:40–48

    Article  CAS  Google Scholar 

  49. Tomkins P, Müller TE (2018) ChemCatChem 10:1438–1445

    Article  CAS  Google Scholar 

  50. Cao J, Han F, Wang L, Huang X, Cao Y, He P, Yang H, Chen J, Li H (2020) RSC Adv 10:16515–16525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Advani JH, Khan NH, Bajaj HC, Biradar AV (2019) Appl Surf Sci 487:1307–1315

    Article  CAS  Google Scholar 

  52. Kim JK, Lee JK, Kang KH, Song JC, Song IK (2015) Appl Catal A: Gen 498:142–149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Innovative Talent Promotion Plan—Youth Science and Technology New Star Program of Shaanxi Province of China (2018KJXX-074), the Guidance of Technology Innovation in Shaanxi Province of China (2019CGHJ-04), and the Innovation Capability Support Program of Shaanxi Province of China (2020TD-007). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinli Jing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xiong, F., Wang, Z. et al. High-Performance Pd/AC Catalyst for Meropenem Synthesis Based on Selective Surface Modification of Activated Carbon. Catal Lett 152, 2078–2089 (2022). https://doi.org/10.1007/s10562-021-03783-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03783-6

Keywords

Navigation