Skip to main content
Log in

Palladium Loaded Dendronized Polymer as Efficient Polymeric Sustainable Catalyst for Heck Coupling Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The palladium incorporated amine-functionalized dendronized polymer was synthesized by the addition of palladium acetate to dendronized polymer in methanol at room temperature. Palladium species are immobilized onto the dendritic structure by their coordination with amino functional groups. The newly developed dendritic system showed high palladium content in the low generation level itself, which was found to be 4.19 mmol/g. This was fairly higher than, the other palladium-based catalysts. Energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, UV–Visible spectroscopy, and X-ray photoelectron spectroscopy were used to confirm the successful synthesis of the new catalyst. It was used as a homogeneous palladium catalyst for Heck coupling reaction between olefins and differently substituted aryl halides and the products were isolated in high yield. The products isolated were in trans configuration, which indicated the selectivity of the newly developed catalytic system. Also, this catalyst system was reused up to nine times without a significant decrease in its catalytic activity. The easy accessibility of catalytic sites, stability, resistance to metal leaching, high catalytic activity and remarkable stereoselectivity with a low amount of catalyst are all due to the dendritic support. The docking study was carried out for all the stilbene derivatives obtained by the Heck coupling reaction against DprE1 protein to study its potential antitubercular activity. All the compounds displayed superior docking score values over the range − 6.5 to − 8.2 kcal/mol, compared to the standard drug isoniazid with docking score of − 6.1 kcal/mol against DprE1.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. Liu X, Lin W, Astruc D, Gu H (2019) Prog Polym Sci 96:43

    Article  CAS  Google Scholar 

  2. Chen Y, Xiong X (2010) Chem Commun 46:5049

    Article  CAS  Google Scholar 

  3. Sandoval-Yañez C, Castro Rodriguez C (2020) Materials 13:570

    Article  PubMed Central  CAS  Google Scholar 

  4. Frauenrath H (2005) Prog Polym Sci 30:325

    Article  CAS  Google Scholar 

  5. Zhang A, Shu L, Bo Z, Schlüter AD (2003) Macromol Chem Phys 204:328

    Article  CAS  Google Scholar 

  6. Heck RF, Nolley JP Jr (1972) J Org Chem 37:2320

    Article  CAS  Google Scholar 

  7. McMahon CM, Alexanian EJ (2014) Angew Chem Int Ed 53:5974

    Article  CAS  Google Scholar 

  8. Bloome KS, McMahen RL, Alexanian EJ (2011) J Am Chem Soc 133:20146

    Article  CAS  PubMed  Google Scholar 

  9. Miyaura N, Yamada K, Suzuki A (1979) Tetrahedron Lett 20:3437

    Article  Google Scholar 

  10. Zhang Z, Wang H, Qiu N, Kong Y, Zeng W, Zhang Y, Zhao J (2018) J Org Chem 83:8710

    Article  CAS  PubMed  Google Scholar 

  11. Milstein D, Stille JK (1978) J Am Chem Soc 100:3636

    Article  CAS  Google Scholar 

  12. Zhang Y, Gao X, Li J, Tu G (2015) J Mater Chem C 3:7463

    Article  CAS  Google Scholar 

  13. Cho CS (2005) J Organomet Chem 690:4094

    Article  CAS  Google Scholar 

  14. Orha L, Tukacs JM, Kollár L, Mika LT (2019) Beilstein J Org Chem 15:2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miao H, Wang F, Zhou S, Zhang G, Li Y (2015) Org Biomol Chem 13:4647

    Article  CAS  PubMed  Google Scholar 

  16. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Acc Chem Res 34:181

    Article  CAS  PubMed  Google Scholar 

  17. Ghasemi S, Karim S (2018) Colloid Polym Sci 296:1323

    Article  CAS  Google Scholar 

  18. Yuan N, Pascanu V, Huang Z, Valiente A, Heidenreich N, Leubner S, Ken Inge A, Gaar J, Stock N, Persson I, Martin-Matute B, Zou X (2018) J Am Chem Soc 140:8206

    Article  CAS  PubMed  Google Scholar 

  19. George S, Sreekumar K (2021) Appl Organomet Chem 35:6083

    Article  CAS  Google Scholar 

  20. Wang B, Yan T, Chang T, Wei J, Zhou Q, Yang S, Fang T (2017) Carbon 122:9

    Article  CAS  Google Scholar 

  21. Reek JN, De Groot D, Oosterom GE, Kamer PC, Van Leeuwen PW (2002) Biotechnol Mol Biol Rev 90:159

    Article  CAS  Google Scholar 

  22. de Jesus E, Flores JC (2008) Ind Eng Chem Res 47:7968

    Article  CAS  Google Scholar 

  23. Murugan E, Jebaranjitham JN, Usha A (2012) Appl Nanosci 2:211

    Article  CAS  Google Scholar 

  24. Ma R, Yang P, Bian F (2018) New J Chem 42:4748

    Article  CAS  Google Scholar 

  25. Mangala K, Sinija PS, Sreekumar K (2015) J Mol Catal A-Chem 407:87

    Article  CAS  Google Scholar 

  26. Niakan M, Asadi Z, Masteri-Farahani M (2019) Appl Surf Sci 481:394

    Article  CAS  Google Scholar 

  27. Niakan M, Asadi Z, Masteri-Farahani M (2020) J Phys Chem Solids 147:109642

    Article  CAS  Google Scholar 

  28. Mizutani T, Honzawa S, Tosaki S, Shibasaki M (2002) Angew Chem Int Ed 2(41):4680

    Article  Google Scholar 

  29. Trost BM, Knopf JD, Brindle CS (2016) Chem Rev 116:15035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rousee K, Bouillon JP, Couve-Bonnaire S, Pannecoucke X (2016) Org Lett 18:540

    Article  CAS  PubMed  Google Scholar 

  31. Tietze LF, Kettschau G, Heuschert U, Nordmann G (2001) Chem Eur J 7:368

    Article  CAS  PubMed  Google Scholar 

  32. Mizoroki T, Mori K, Ozaki A (1971) Bull Chem Soc Jpn 44:581

    Article  CAS  Google Scholar 

  33. Wu S, Jiang H, Zhang H, Zhao L, Yuan P, Zhang Y, Su Q, Wang Y, Wu L, Yang Q (2020) J Organomet Chem 925:121496

    Article  CAS  Google Scholar 

  34. Mane PA, Neogy S, Dey S (2020) Appl Organomet Chem 34:5405

    Article  CAS  Google Scholar 

  35. Moradi R, Mohammadi Ziarani G, Badiei A, Mohajer F (2020) Appl Organomet Chem 34:5916

    Article  CAS  Google Scholar 

  36. Mousavi S, Mansoori Y, Nuri A, Koohi-Zargar B (2020) Catal Lett 2020:1

    Google Scholar 

  37. Dasaradhan C, Nawaz Khan FR (2020) Polycycl Aromat Compd 2020:1

    CAS  Google Scholar 

  38. Liu P, Ye Z, Wang WJ, Li BG (2013) Macromolecules 46:72

    Article  CAS  Google Scholar 

  39. Isfahani AL, Mohammadpoor-Baltork I, Mirkhani V, Khosropour AR, Moghadam M, Tangestaninejad S, Kia R (2013) Adv Synth Catal 355:957

    Article  CAS  Google Scholar 

  40. Zakeri M, Moghadam M, Mirkhani V, Tangestaninejad S, Mohammadpoor-Baltork I, Pahlevanneshan Z (2016) RSC Adv 6:104608

    Article  CAS  Google Scholar 

  41. Tabatabaei Rezaei SJ, Shamseddin A, Ramazani A, Mashhadi Malekzadeh A, Azimzadeh Asiabi P (2017) Appl Organomet Chem 31:3707

    Article  CAS  Google Scholar 

  42. Niknam E, Moaddeli A, Khalafi-Nezhad A (2020) J Organomet Chem 923:121369

    Article  CAS  Google Scholar 

  43. Gan W, Xu H, Jin X, Cao X, Gao H (2020) ACS Appl Polym Mater 2:677

    Article  CAS  Google Scholar 

  44. Jain AN, Nicholls A (2008) J Comput-Aided Mol Des 22:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin X, Li X, Lin X (2020) Molecules 25:1375

    Article  CAS  PubMed Central  Google Scholar 

  46. Chikhale RV, Barmade MA, Murumkar PR, Yadav MR (2018) J Med Chem 61:8563

    Article  CAS  PubMed  Google Scholar 

  47. Hiba K, Sreekumar K (2021) React Funct Polym 160:104827

    Article  CAS  Google Scholar 

  48. Kuchkina NV, Rajadurai M, Pal M, Basaveni S, Sorokina SA, Krasnova IY, Serkova ES, Shifrina ZB (2018) Russ Chem Bull 67:1035

    Article  CAS  Google Scholar 

  49. Wu L, Li ZW, Zhang F, He YM, Fan QH (2008) Adv Synth Catal 350:846

    Article  CAS  Google Scholar 

  50. Bernechea M, de Jesús E, López-Mardomingo C, Terreros P (2009) Inorg Chem 48:4491

    Article  CAS  PubMed  Google Scholar 

  51. Mizuguchi M, Nara M, Ke Y, Kawano K, Hiraoki T, Nitta K (1997) Eur J Biochem 250:72

    Article  CAS  PubMed  Google Scholar 

  52. Kragten DD, Van Santen RA, Crawford MK, Provine WD, Lerou JJ (1999) Inorg Chem 38:331

    Article  CAS  Google Scholar 

  53. Zhang JY, Boyd IW (1997) Appl Phys A 65:379

    Article  CAS  Google Scholar 

  54. Sherwood J, Clark JH, Fairlamb IJ, Slattery JM (2019) Green Chem 21:2164

    Article  CAS  Google Scholar 

  55. Jagtap S (2017) Catalysts 7:267

    Article  CAS  Google Scholar 

  56. Dahan A, Portnoy M (2007) J Am Chem Soc 129:5860

    Article  CAS  PubMed  Google Scholar 

  57. dos Santos BF, da Silva BA, de Oliveira AR, Sarragiotto MH, Rinaldi AW, Domingues NLC (2020) Synthesis 2020:1

    Google Scholar 

  58. Manley TR, Murray B (1972) Br Polym J 4:291

    Article  CAS  Google Scholar 

  59. Dobrovszky K, Ronkay F (2014) Waste Manag 34:2104

    Article  CAS  PubMed  Google Scholar 

  60. Shaw BL (1998) New J Chem 22:77

    Article  CAS  Google Scholar 

  61. Shaw BL (1998) Chem Commun 13:1361

    Article  Google Scholar 

  62. Niakan M, Masteri-Farahani M, Shekaari H, Karimi S (2021) Carbohydr Polym 251:117109

    Article  CAS  PubMed  Google Scholar 

  63. Sun P, Yang J, Chen C, Xie K, Peng J (2020) Catal Lett 150:2900

    Article  CAS  Google Scholar 

  64. Rahimi L, Mansoori Y, Nuri A, Koohi-Zargar B, Esquivel D (2020) Appl Organomet Chem 35:6078

    Google Scholar 

  65. Vibhute SP, Mhaldar PM, Shejwal RV, Rashinkar GS, Pore DM (2020) Tetrahedron Lett 61:151801

    Article  CAS  Google Scholar 

  66. Bagherzadeh M, Hosseini H, Salami R (2020) Appl Organomet Chem 34:5287

    Google Scholar 

  67. Xu HJ, Zhao YQ, Zhou XF (2011) J Org Chem 76:8036

    Article  CAS  PubMed  Google Scholar 

  68. Mennecke K, Kirschning A (2009) Beilstein J Org Chem 5:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Hiba K. gratefully acknowledges UGC, New Delhi, India for financial support in the form of a Senior Research Fellowship and for the support under SAP DRS-III. The authors are thankful to the Sophisticated Analytical Instrumentation Facility (SAIF), CUSAT, Kochi for EDX, and Department of Physics for FE-SEM analysis. We thank CLIF, University of Kerala for XPS, and IIRBS, Mahatma Gandhi University for NMR analysis.

Funding

This work was supported by the University Grants Commission (Grant No. Ref. No: 21/12/2014 (ii) EU-V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sreekumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

GC–MS, 1H NMR, 13C NMR of compounds

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiba, K., Krishna, G.A., Prathapan, S. et al. Palladium Loaded Dendronized Polymer as Efficient Polymeric Sustainable Catalyst for Heck Coupling Reaction. Catal Lett 152, 1819–1834 (2022). https://doi.org/10.1007/s10562-021-03767-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03767-6

Keywords

Navigation