Skip to main content
Log in

Nano-magnetic-iron Oxides@choline Acetate as a Heterogeneous Catalyst for the Synthesis of 1,2,3-Triazoles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this research, four cholines supported on core–shell iron oxides, Fe2O3@MgO@Ch.OAc (choline acetate), Fe2O3@MgO@Ch.OH (choline hydroxide), Fe3O4@Ch.OAc, Fe3O4@Ch.OH, were synthesized. The synthesized catalysts were tested in 1,2,3-triazoles synthesis by the reaction of nitromethane, aldehyde, and benzyl azide in EtOH as a green solvent. Among four synthesized heterogeneous catalysts, the Fe2O3@MgO@ch.OAc showed superior catalytic activity for the reaction and afforded the desired triazoles in good isolated yields under mild reaction conditions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available in the supplementary material of this article.

References

  1. Alvarez R, Velazquez S, San-Felix A, Aquaro S, Clercq ED, Perno C-F, Karlsson A, Balzarini J, Camarasa MJ (1994) J Med Chem 37:4185–4194

    Article  PubMed  CAS  Google Scholar 

  2. Velazquez S, Alvarez R, Perez C, Gago F, De Clercq E, Balzarini J, Camarasa M (1998) Antivir Chem Chemother 9:481–489

    Article  PubMed  CAS  Google Scholar 

  3. Kumar D, Reddy VB, Kumar A, Mandal D, Tiwari R, Parang K (2011) Bioorg Med Chem Lett 21:449–452

    Article  PubMed  CAS  Google Scholar 

  4. Pereira D, Fernandes P (2011) Bioorg Med Chem Lett 21:510–513

    Article  PubMed  CAS  Google Scholar 

  5. Buckle DR, Outred DJ, Rockell CJ, Smith H, Spicer BA (1983) J Med Chem 26:251–254

    Article  PubMed  CAS  Google Scholar 

  6. Fung-Tomc JC, Huczko E, Minassian B, Bonner DP (1998) Antimicrob Agents Chemother 42:313–318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wamhoff H (1984) Comprehensive heterocyclic chemistry. Pergamon, Oxford

    Google Scholar 

  8. Fan W-Q, Katritzsky AR (1996) Comprehensive heterocyclic chemistry II. Elsevier, Oxford

    Google Scholar 

  9. Wang W, Peng X, Wei F, Tung CH, Xu Z (2016) Angew Chem 128:659–663

    Article  Google Scholar 

  10. Wei F, Wang W, Ma Y, Tung C-H, Xu Z (2016) Chem Commun 52:14188–14199

    Article  CAS  Google Scholar 

  11. Xu Z, Han LL, Zhuang GL, Bai J, Sun D (2015) Inorg Chem 54:4737–4743

    Article  PubMed  CAS  Google Scholar 

  12. Tajbakhsh M, Farhang M, Baghbanian SM, Hosseinzadeh R, Tajbakhsh M (2015) New J Chem 39:1827–1839

    Article  CAS  Google Scholar 

  13. Eisavi R, Naseri K (2021) RSC Adv 11:13061–13076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Barman K, Dutta P, Chowdhury D, Baruah PK (2021) BioNanoScience 11:189–199

    Article  Google Scholar 

  15. Bagdi PR, Basha RS, Baruah PK, Khan AT (2014) RSC Adv 4:10652–10659

    Article  CAS  Google Scholar 

  16. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem 114:2708–2711

    Article  Google Scholar 

  17. Bhuyan P, Bhorali P, Islam I, Bhuyan AJ, Saikia L (2018) Tetrahedron Lett 59:1587–1591

    Article  CAS  Google Scholar 

  18. Sonawane YA, Phadtare SB, Borse BN, Jagtap AR, Shankarling GS (2010) Org Lett 12:1456–1459

    Article  PubMed  CAS  Google Scholar 

  19. Sanap AK, Shankarling GS (2014) RSC Adv 4:34938–34943

    Article  CAS  Google Scholar 

  20. Azizi N, Rahimi Z, Alipour M (2015) Competes Rendus Chimie 18:626–629

    Article  CAS  Google Scholar 

  21. Haghbakhsh R, Peyrovedin H, Raeissi S, Duarte ARC, Shariati A (2020) Int J Refrig 113:174–186

    Article  CAS  Google Scholar 

  22. Wagle DV, Zhao H, Baker GA (2014) Acc Chem Res 47:2299–2308

    Article  PubMed  CAS  Google Scholar 

  23. Chakrabarti MH, Mjalli FS, AlNashef IM, Hashim MA, Hussain MA, Bahadori L, Low CTJ (2014) Renew Sustain Energy Rev 30:254–270

    Article  CAS  Google Scholar 

  24. Miraki MK, Mehraban JA, Yazdani E, Heydari A (2017) J Mol Liq 234:129–132

    Article  CAS  Google Scholar 

  25. Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY (2017) Biotechnol Adv 35:105–134

    Article  PubMed  CAS  Google Scholar 

  26. Vander Heiden MG (2011) Nat Rev Drug Discov 10:671–684

    Article  PubMed  CAS  Google Scholar 

  27. Oliveira FS, Pereiro AB, Rebelo LP, Marrucho IM (2013) Green Chem 15:1326–1330

    Article  CAS  Google Scholar 

  28. Garcia G, Aparicio S, Ullah R, Atilhan M (2015) Energ Fuel 29:2616–2644

    Article  CAS  Google Scholar 

  29. Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V (2017) Microchem J 135:33–38

    Article  CAS  Google Scholar 

  30. Hooshmand SE, Afshari R, Ramón DJ, Varma RS (2020) Green Chem 22:3668–3692

    Article  CAS  Google Scholar 

  31. Kaper H, Bouchmella K, Mutin PH, Goettmann F (2012) ChemCatChem 4:1813–1818

    Article  CAS  Google Scholar 

  32. Liu S, Bai SQ, Zheng Y, Shah KW, Han MY (2012) ChemCatChem 4:1462–1484

    Article  CAS  Google Scholar 

  33. Tavakol H, Keshavarzipour F (2017) Appl Organomet Chem 31:e3811

    Article  Google Scholar 

  34. Capello C, Fischer U, Hungerbühler K (2007) Green Chem 9:927–934

    Article  CAS  Google Scholar 

  35. Shylesh S, Schuenemann V, Thiel WR (2010) Angew Chem Int Ed 49:3428–3459

    Article  CAS  Google Scholar 

  36. Rostamizadeh S, Tahershamsi L, Zekri N (2015) J Iran Chem Soc 12:1381–1389

    Article  CAS  Google Scholar 

  37. Dolatkhah Z, Javanshir S, Bazgir A, Mohammadkhani A (2018) ChemistrySelect 3:5486–5493

    Article  CAS  Google Scholar 

  38. Pazoki F, Salamatmanesh A, Bagheri S, Heydari A (2020) Catal Lett 150:1186–1195

    Article  CAS  Google Scholar 

  39. Zhao W, Chi X, Li H, He J, Long J, Xu Y, Yang S (2019) Green Chem 21:567–577

    Article  CAS  Google Scholar 

  40. Kalmode HP, Vadagaonkar KS, Murugan K, Prakash S, Chaskar AC (2015) RSC Adv 5:35166–35174

    Article  CAS  Google Scholar 

  41. Vajekar SN, Shankarling GS (2020) Synth Commun 50:1147–1158

    Article  CAS  Google Scholar 

  42. Arsalani N, Fattahi H, Nazarpoor M (2010) Express Polym Lett 4:329–338

    Article  CAS  Google Scholar 

  43. Bagheri S, Nejad MJ, Pazoki F, Miraki MK, Heydari A (2019) ChemistrySelect 4:11930–11935

    Article  CAS  Google Scholar 

  44. He H, Xiao H, Kuang H, Xie Z, Chen X, Jing X, Huang Y (2014) Colloids Surf B 117:75–81

    Article  CAS  Google Scholar 

  45. Nabiyouni G, Ghanbari D, Karimzadeh S, Samani GB (2014) J Nanostruct 4:467–474

    Google Scholar 

  46. Aliahmad M, Moghaddam NN (2013) Mater Sci-Pol 31:264–268

    Article  CAS  Google Scholar 

  47. Cullity BD (1956) Elements of X-ray Diffraction. Addison-Wesley Publishing, Boston

    Google Scholar 

  48. Azhari A, Sh MS, Golestanifard F, Saberi A (2010) Mater Chem Phys 124:658–663

    Article  CAS  Google Scholar 

  49. Reddy VH, Reddy YR, Sridhar B, Reddy BS (2016) Adv Synth Catal 358:1088–1092

    Article  CAS  Google Scholar 

  50. Adenot A, Landstrom EB, Gallou F, Lipshutz BH (2017) Green Chem 19:2506–2509

    Article  CAS  Google Scholar 

  51. Naeimi H, Shaabani R (2017) Ultrason Sonochem 34:246–254

    Article  PubMed  CAS  Google Scholar 

  52. Mouradzadegun A, Mostafavi MA (2016) RSC Adv 6:42522–42531

    Article  CAS  Google Scholar 

  53. Campbell-Verduyn LS, Mirfeizi L, Dierckx RA, Elsinga PH, Feringa BL (2009). Chem Commun. https://doi.org/10.1039/b822994e

    Article  Google Scholar 

  54. Wangweerawong A, Hummel JR, Bergman RG, Ellman JA (2016) J Org Chem 81:1547–1557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Asano K, Matsubara S (2010) Org Lett 12:4988–4991

    Article  PubMed  CAS  Google Scholar 

  56. Chassaing S, Sani Souna Sido A, Alix A, Kumarraja M, Pale P, Sommer J (2008) Chem Eur J 14:6713–6721

    Article  PubMed  CAS  Google Scholar 

  57. Velpuri VR, Muralidharan K (2019) J Organomet Chem 884:59–65

    Article  CAS  Google Scholar 

  58. Szadkowska A, Staszko S, Zaorska E, Pawłowski R (2016) RSC Adv 6:44248–44253

    Article  CAS  Google Scholar 

  59. Chavan PV, Pandit KS, Desai UV, Kulkarni MA, Wadgaonkar PP (2014) RSC Adv 4:42137–42146

    Article  CAS  Google Scholar 

  60. Kalhor-Monfared S, Beauvineau C, Scherman D, Girard C (2016) Eur J Med Chem 122:436–441

    Article  PubMed  CAS  Google Scholar 

  61. Hu Q, Liu Y, Deng X, Li Y, Chen Y (2016) Adv Synth Catal 358:1689–1693

    Article  CAS  Google Scholar 

  62. Kumar AS, Reddy MA, Knorn M, Reiser O, Sreedhar B (2013) Eur J Org Chem 2013:4674–4680

    Article  CAS  Google Scholar 

  63. Saha A, Wu CM, Peng R, Koodali R, Banerjee S (2019) Eur J Org Chem 2019:104–111

    Article  CAS  Google Scholar 

  64. Mirzaei-Mosbat M, Ghorbani-Vaghei R, Sarmast N (2019) ChemistrySelect 4:1731–1737

    Article  CAS  Google Scholar 

  65. Phukan P, Agarwal S, Deori K, Sarma D (2020) Catal Lett 150:2208–2219. https://doi.org/10.1007/s10562-020-03143-w

    Article  CAS  Google Scholar 

  66. Vergara-Arenas BI, Lomas-Romero L, Ángeles-Beltrán D, Negrón-Silva GE, Gutiérrez-Carrillo A, Lara VH, Morales-Serna JA (2017) Tetrahedron Lett 58:2690–2694

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Faculty of chemistry at Tarbiat Modares University for supporting this work, Also, we gratefully acknowledge the Part Pishtaz Pouya Golestan Company especially Dr. Hossein Rahmani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Heydari.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7951 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadkhani, A., Heydari, A. Nano-magnetic-iron Oxides@choline Acetate as a Heterogeneous Catalyst for the Synthesis of 1,2,3-Triazoles. Catal Lett 152, 1678–1691 (2022). https://doi.org/10.1007/s10562-021-03739-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03739-w

Keywords

Navigation