Skip to main content
Log in

An Updated Comprehensive Literature Review of Phenol Hydrogenation Studies

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cyclohexanone is an important industrial intermediate to produce nylons. The main industrial routes for cyclohexanone manufacture used cyclohexane and phenol as feedstock. The selective hydrogenation of phenol to cyclohexanone comprises one-step and two-step processes. This review presents a detailed analysis of the research findings available in the open literature for phenol hydrogenation to produce cyclohexanone and cyclohexanol and covers the research conducted during 2014–2020 using conventional and modern catalysts. This review aims to disseminate the knowledge of the current research conducted for phenol hydrogenation and provide a comprehensive resource for researchers working in this field. This review has included and discussed both methods of thermocatalytic and electrocatalytic hydrogenation of phenol. Most of the studies have used carbon or carbon–nitrogen supported catalysts loaded with Pd. The carbon and carbon–nitrogen materials were derived from different sources including polymers, activated carbon, and MOF. Oxygen treatment was found to produce highly active and stable catalysts. The high performance was found associated with the high surface area of the catalyst and uniformly dispersed metal nanoparticles. The acidic conditions exhibited an increase in catalyst performance. Alkali-promoted precious metal-loaded catalysts performed better than un-promoted catalysts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

Amberlyst-45:

Macroporous sulfonic acid-containing polymeric catalyst made of polystyrene sulfonate

CN:

N-doped carbon

C3N4 :

Carbon nitride

CH3CN:

Acetonitrile

C6H12 :

Cyclohexane

C–OH:

Cyclohexanol

C=O:

Cyclohexanone

KA oil:

Mixture of cyclohexanol and cyclohexanone

LDHs:

Layered double hydroxides

MNPs:

Magnetite nanoparticles

NPs:

Nanoparticles

NGO:

Nano graphene oxide

Nylon 6:

Made from the polymerization of caprolactam

Nylon 6,6:

Made from the polymerization of adipic acid and hexamethylene diamine

PVDF-HFP:

Poly(vinylidene fluoride)-hexafluoropropylene

SBA-15:

Santa Barbara Amorphous-15. Highly stable mesoporous silica sieve developed by researchers at the University of California at Santa Barbara

TFA:

Trifluoracetic acid

TNWs:

Titania nanowires

TOF:

Moles of phenol converted per mole of catalyst per reaction time

TON:

Moles of phenol converted per mole of catalyst

UiO-66:

Stands for Universiteteti Oslo-66. Regarded as a typical MOF built of [Zr6O4(OH)4] octahedron clusters and 1,4-benzene dicarboxylic acid ligands

ZIF-67:

Zeolitic imidazolate framework-67. Formed by bridging 2-methylimidazolate anions and cobalt cations resulting in sodalite (SOD) topology with a pore size of about 0.34 nm

References

  1. Matshwele J, Mmusi K, Vishwanathan V (2021) A single step low cost production of cyclohexanone from phenol hydrogenation. Sreyas Int J Sci Techn 3(4):1–6. https://doi.org/10.24951/sreyasijst.org/2019041001

    Article  Google Scholar 

  2. Musser MT (2011) Cyclohexanol and cyclohexanone. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Germany

    Google Scholar 

  3. Fisher WB, VanPeppen JF (2005) Cyclohexanol-Cyclohexanone. In: Van Nostrand’s encyclopedia of chemistry. https://doi.org/10.1002/0471740039.vec0746

  4. Zhong J, Chen J, Chen L (2014) Selective hydrogenation of phenol and related derivatives. Catal Sci Technol 4(10):3555–3569. https://doi.org/10.1039/c4cy00583j

    Article  CAS  Google Scholar 

  5. Li X, Jiang H, Hou M, Liu Y, Xing W, Chen R (2019) Enhanced phenol hydrogenation for cyclohexanone production by membrane dispersion. Chem Eng J 368:1. https://doi.org/10.1016/j.cej.2019.01.023

    Article  CAS  Google Scholar 

  6. Gao Y, Hensen EJM (2018) Highly active and stable spinel-oxide supported gold catalyst for gas-phase selective aerobic oxidation of cyclohexanol to cyclohexanone. Catal Commun 117:53–56. https://doi.org/10.1016/j.catcom.2018.07.019

    Article  CAS  Google Scholar 

  7. Dong J, Wen X, Zhu T, Qin J, Wu Z, Chen L, Bai G (2020) Hierarchically nanostructured bimetallic NiCo/MgxNiyO catalyst with enhanced activity for phenol hydrogenation. Mol Catal 485:110846. https://doi.org/10.1016/j.mcat.2020.110846

    Article  CAS  Google Scholar 

  8. Zhang T, Wang Z, Zhao Q, Li F, Xue W (2015) Partial hydrogenation of benzene to cyclohexene over Ru-Zn/MCM-41. J Nanomater. https://doi.org/10.1155/2015/670896

    Article  Google Scholar 

  9. Jiang H, Qu Z, Li Y, Huang J, Chen R, Xing W (2016) One-step semi-continuous cyclohexanone production via hydrogenation of phenol in a submerged ceramic membrane reactor. Chem Eng J 284:724–732. https://doi.org/10.1016/j.cej.2015.09.037

    Article  CAS  Google Scholar 

  10. Kong X, Gong Y, Mao S, Wang Y (2018) Selective hydrogenation of phenol. ChemNanoMat 4(5):432–450. https://doi.org/10.1002/cnma.201800031

    Article  CAS  Google Scholar 

  11. Liu H, Jiang T, Han B, Liang S, Zhou Y (2009) Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst. Science 326(5957):1250–1252. https://doi.org/10.1126/science.1179713

    Article  CAS  PubMed  Google Scholar 

  12. Liu D, Li G, Yang F, Wang H, Han J, Zhu X, Ge Q (2017) Competition and cooperation of hydrogenation and deoxygenation reactions during hydrodeoxygenation of phenol on Pt(111). J Phys Chem C 121(22):12249–12260. https://doi.org/10.1021/acs.jpcc.7b03042

    Article  CAS  Google Scholar 

  13. Li G, Han J, Wang H, Zhu X, Ge Q (2015) Role of dissociation of phenol in its selective hydrogenation on Pt(111) and Pd(111). ACS Catal 5(3):2009–2016. https://doi.org/10.1021/cs501805y

    Article  CAS  Google Scholar 

  14. Resende KA, de Souza PM, Noronha FB, Hori CE (2019) Thermodynamic analysis of phenol hydrodeoxygenation reaction system in gas phase. Renew Energy 136:365–372. https://doi.org/10.1016/j.renene.2018.12.116

    Article  CAS  Google Scholar 

  15. Liu L, Li Y, Cui Y, Fang S, Wang K, Chen J, Chun C, Li H (2019) Thermodynamic analysis on hydrogenation process of phenol of bio-oil model compound. IOP Conf Ser: Earth Environ Sci 310(4):042007. https://doi.org/10.1088/1755-1315/310/4/042007

    Article  Google Scholar 

  16. Yoon Y, Rousseau R, Weber RS, MeiLercher DJA (2014) First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase. J Am Chem Soc 136(29):10287–10298. https://doi.org/10.1021/ja501592y)

    Article  CAS  PubMed  Google Scholar 

  17. Porwal G, Gupta S, Sreedhala S, Elizabeth J, Khan TS, Haider MA, Vinod CP (2019) Mechanistic insights into the pathways of phenol hydrogenation on Pd nanostructures. ACS Sustain Chem Eng 7(20):17126–17136. https://doi.org/10.1021/acssuschemeng.9b03392

    Article  CAS  Google Scholar 

  18. Díaz E, Mohedano AF, Calvo L, Gilarranz MA, Casas JA, Rodríguez JJ (2007) Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts. Chem Eng J 131(1–3):65–71. https://doi.org/10.1016/j.cej.2006.12.020

    Article  CAS  Google Scholar 

  19. Nelson NC, Manzano JS, Sadow AD, Overbury SH, Slowing II (2015) Selective hydrogenation of phenol catalyzed by palladium on high-surface-area ceria at room temperature and ambient pressure. ACS Catal 5(4):2051–2061. https://doi.org/10.1021/cs502000j

    Article  CAS  Google Scholar 

  20. Kneese AV (1989) Sustainable environmental management. Resour Policy 15(3):276–277. https://doi.org/10.1016/0301-4207(89)90062-7

    Article  Google Scholar 

  21. Liu S, Han J, Wu Q, Bian B, Li L, Yu S, Song J, Zhang C, Ragauskas AJ (2019) Hydrogenation of phenol to cyclohexanone over bifunctional Pd/C-heteropoly acid catalyst in the liquid phase. Catal Lett 149(9):2383–2389. https://doi.org/10.1007/s10562-019-02852-1

    Article  CAS  Google Scholar 

  22. Li M, Li Y, Jia L, Wang Y (2018) Tuning the selectivity of phenol hydrogenation on Pd/C with acid and basic media. Catal Comm 103:88–91. https://doi.org/10.1016/j.catcom.2017.09.028

    Article  CAS  Google Scholar 

  23. Nie R, Jiang H, Lu X, Zhou D, Xia Q (2016) Highly active electron-deficient Pd clusters on N-doped active carbon for aromatic ring hydrogenation. Catal Sci Technol 6(6):1913–1920. https://doi.org/10.1039/c5cy01418b

    Article  CAS  Google Scholar 

  24. Xiang Y, Kong L, Xie P, Xu T, Wang J, Li X (2014) Carbon nanotubes and activated carbons supported catalysts for phenol in situ hydrogenation: hydrophobic/hydrophilic effect. Ind Eng Chem Res 53(6):2197–2203. https://doi.org/10.1021/ie4035253

    Article  CAS  Google Scholar 

  25. Zhang D, Ye F, Xue T, Guan Y, Wang YM (2014) Transfer hydrogenation of phenol on supported Pd catalysts using formic acid as an alternative hydrogen source. Catal Today 234:133–138. https://doi.org/10.1016/j.cattod.2014.02.039

    Article  CAS  Google Scholar 

  26. Li F, Cao B, Zhu W, Song H, Wang K, Li C (2017) Hydrogenation of phenol over Pt/CNTs: the effects of Pt loading and reaction solvents. Catalysts 7(5):1–10. https://doi.org/10.3390/catal7050145

    Article  CAS  Google Scholar 

  27. Zhang L, Wang B, Ding Y, Wen G, Hamid SBA, Su D (2016) Disintegrative activation of Pd nanoparticles on carbon nanotubes for catalytic phenol hydrogenation. Catal Sci Technol 6(4):1003–1006. https://doi.org/10.1039/c5cy02165k

    Article  CAS  Google Scholar 

  28. Xu T, Zhang Q, Cen J, Xiang Y, Li X (2015) Selectivity tailoring of Pd/CNTs in phenol hydrogenation by surface modification: role of CO oxygen species. Appl Surf Sci 324:634–639. https://doi.org/10.1016/j.apsusc.2014.10.165

    Article  CAS  Google Scholar 

  29. Chen C, Liu P, Zhou M, Sharma BK, Jiang J (2020) Selective hydrogenation of phenol to cyclohexanol over Ni/CNT in the absence of external hydrogen. Energies 13(4):1–12. https://doi.org/10.3390/en13040846

    Article  CAS  Google Scholar 

  30. Liu Z, Hamad IA, Li Y, Chen Y, Wang S, Jentoft RE, Jentoft FC (2019) Poisoning and competitive adsorption effects during phenol hydrogenation on platinum in water-alcohol mixtures. Appl Catal A 585:117199. https://doi.org/10.1016/j.apcata.2019.117199

    Article  CAS  Google Scholar 

  31. Bhadra BN, Vinu A, Serre C, Jhung SH (2019) MOF-derived carbonaceous materials enriched with nitrogen: preparation and applications in adsorption and catalysis. Mater Today 25:88–111. https://doi.org/10.1016/j.mattod.2018.10.016

    Article  CAS  Google Scholar 

  32. Zhang J, Zhang C, Jiang H, Liu Y, Chem R (2020) Highly efficient phenol hydrogenation to cyclohexanone over Pd@CN-rGO in aqueous phase. Ind Eng Chem Res 59(23):10768–10777

    Article  CAS  Google Scholar 

  33. Yang G, Zhang J, Jiang H, Liu Y, Chen R (2019) Turning surface properties of Pd/N-doped porous carbon by trace oxygen with enhanced catalytic performance for selective phenol hydrogenation to cyclohexanone. Appl Catal A 588:117306. https://doi.org/10.1016/j.apcata.2019.117306

    Article  CAS  Google Scholar 

  34. Hu S, Yang G, Jiang H, Liu Y, Chen R (2018) Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): role of catalyst reduction method. Appl Surf Sci 435:649–655. https://doi.org/10.1016/j.apsusc.2017.11.181

    Article  CAS  Google Scholar 

  35. Hu S, Zhang X, Qu Z, Jiang H, Liu Y, Huang J, Xing W, Chen R (2017) Insights into deactivation mechanism of Pd@CN catalyst in the liquid-phase hydrogenation of phenol to cyclohexanone. J Ind Eng Chem 53:333–340. https://doi.org/10.1016/j.jiec.2017.05.004

    Article  CAS  Google Scholar 

  36. Ding S, Zhang C, Liu Y, Jiang H, Chen R (2017) Selective hydrogenation of phenol to cyclohexanone in water over Pd@N-doped carbons derived from ZIF-67: role of dicyandiamide. Appl Surf Sci 425:484–491. https://doi.org/10.1016/j.apsusc.2017.07.068

    Article  CAS  Google Scholar 

  37. Xu X, Li H, Wang Y (2014) Selective hydrogenation of phenol to cyclohexanone in water over PD@N-doped carbon derived from ionic-liquid precursors. ChemCatChem 6(12):3328–3332. https://doi.org/10.1002/cctc.201402561

    Article  CAS  Google Scholar 

  38. Li A, Shen K, Chen J, Li Z, Li Y (2017) Highly selective hydrogenation of phenol to cyclohexanol over MOF-derived non-noble Co-Ni@NC catalysts. Chem Eng Sci 166:66–76. https://doi.org/10.1016/j.ces.2017.03.027

    Article  CAS  Google Scholar 

  39. Feng G, Chen P, Lou H (2015) Palladium catalysts supported on carbon-nitrogen composites for aqueous-phase hydrogenation of phenol. Catal Sci Technol 5(4):2300–2304. https://doi.org/10.1039/c4cy01647e

    Article  CAS  Google Scholar 

  40. Zhu Y, Yu G, Yang J, Yuan M, Xu D, Dong Z (2019) Biowaste soybean curd residue-derived Pd/nitrogen-doped porous carbon with excellent catalytic performance for phenol hydrogenation. J Colloid Interface Sci 533:259–267. https://doi.org/10.1016/j.jcis.2018.08.067

    Article  CAS  PubMed  Google Scholar 

  41. Abutaleb A, Lolla D, Aljuhani A, Shin HU, Ali MA, Hassan AAY, Maafa IMH, Chase GG (2019) Liquid phase selective hydrogenation of phenol to cyclohexanone over electrospun Pd/PVDF-HFP catalyst. Fibers 7(4):1–11. https://doi.org/10.3390/fib7040028

    Article  CAS  Google Scholar 

  42. Zhao M, Shi J, Hou Z (2016) Selective hydrogenation of phenol to cyclohexanone in water over Pd catalysts supported on Amberlyst-45. Cuihua Xuebao/Chin J Catal 37(2):234–239. https://doi.org/10.1016/S1872-2067(15)60997-4

    Article  CAS  Google Scholar 

  43. Zhu JF, Tao GH, Liu HY, He L, Sun QH, Liu HC (2014) Aqueous-phase selective hydrogenation of phenol to cyclohexanone over soluble Pd nanoparticles. Green Chem 16(5):2664–2669. https://doi.org/10.1039/c3gc42408a

    Article  CAS  Google Scholar 

  44. Wei Z, Li Y, Wang J, Li H, Wang Y (2018) Chemoselective hydrogenation of phenol to cyclohexanol using heterogenized cobalt oxide catalysts. Chin Chem Lett 29(6):815–818. https://doi.org/10.1016/j.cclet.2018.01.020

    Article  CAS  Google Scholar 

  45. Wang Y, Yao J, Li H, Su D, Antonietti M (2011) Highly selective hydrogenation of phenol. J Am Chem Soc 133(8):2362–2365. https://doi.org/10.1021/Ja109856y

    Article  CAS  PubMed  Google Scholar 

  46. Tian C, Fang H, Chen H, Chen W, Zhou S, Duan X, Liu X, Yuan Y (2020) Photodeposition of Pd onto TiO2 nanowires for aqueous-phase selective hydrogenation of phenolics to cyclohexanones. Nanoscale 12(4):2603–2612. https://doi.org/10.1039/c9nr08324c

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y, Kong X, Mao S, Wang Z, Gong Y, Wang Y (2019) Study of the role of alkaline sodium additive in selective hydrogenation of phenol. Chin J Catal 40(10):1516–1524. https://doi.org/10.1016/S1872-2067(19)63386-3

    Article  CAS  Google Scholar 

  48. Kinoshita A, Nakanishi K, Yagi R, Tanaka A, Hashimoto K, Kominami H (2019) Hydrogen-free ring hydrogenation of phenol to cyclohexanol over a rhodium-loaded titanium(IV) oxide photocatalyst. Appl Catal A 578:83–88. https://doi.org/10.1016/j.apcata.2019.04.001

    Article  CAS  Google Scholar 

  49. de Souza PM, Inocêncio CVM, Perez VI, Rabelo-Neto RC, Gonçalves VOO, Jacobs G, Richard F, da Silva VT, Noronha FB (2019) Hydrodeoxygenation of phenol using nickel phosphide catalysts. Study of the effect of the support. Catal Today. https://doi.org/10.1016/j.cattod.2019.08.028

    Article  Google Scholar 

  50. Zhou H, Han B, Liu T, Zhong X, Zhuang G, Wang J (2017) Selective phenol hydrogenation to cyclohexanone over alkali-metal-promoted Pd/TiO2 in aqueous media. Green Chem 19(15):3585–3594. https://doi.org/10.1039/c7gc01318c

    Article  CAS  Google Scholar 

  51. He J, Lu XH, Shen Y, Jing R, Nie RF, Zhou D, Xia QH (2017) Highly selective hydrogenation of phenol to cyclohexanol over nano silica supported Ni catalysts in aqueous medium. Molecular Catalysis 440:87–95. https://doi.org/10.1016/j.mcat.2017.07.016

    Article  CAS  Google Scholar 

  52. Liu T, Zhou H, Han B, Gu Y, Li S, Zheng J, Zhong X, Zhuang GL, Wang JG (2017) Enhanced selectivity of phenol hydrogenation in low-pressure CO2 over supported Pd catalysts. ACS Sustain Chem Eng 5(12):11628–11636. https://doi.org/10.1021/acssuschemeng.7b02974

    Article  CAS  Google Scholar 

  53. Li HF, Zhang QS, Pang ZB, Tian M, Gao P, Wang LL (2016) Pd/TiN nanocomposite catalysts for selective hydrogenation of phenol and its derivatives. Chin Chem Lett 27(9):1500–1504. https://doi.org/10.1016/j.cclet.2016.03.036

    Article  CAS  Google Scholar 

  54. Guan Q, Zeng Y, Shen J, Chai XS, Gu J, Miao R, Li B, Ning P (2016) Selective hydrogenation of phenol by phosphotungstic acid modified Pd/Ce-AlOx catalyst in high-temperature water system. Chem Eng J 299:63–73. https://doi.org/10.1016/j.cej.2016.03.105

    Article  CAS  Google Scholar 

  55. Raut AN, Nandanwar SU, Suryawanshi YR, Chakraborty M, Jauhari S, Mukhopadhyay S, Shenoy KT, Bajaj HC (2016) Liquid phase selective hydrogenation of phenol to cyclohexanone over Ru/Al2O3 nanocatalyst under mild conditions. Kinet Catal 57(1):39–46. https://doi.org/10.1134/S0023158416010110

    Article  CAS  Google Scholar 

  56. Fan L, Zhang L, Shen Y, Liu D, Wahab N, Hasan MM (2016) Liquid-phase hydrogenation of phenol to cyclohexanone over supported palladium catalysts. Bull Chem React Eng Catal 11(3):354–362. https://doi.org/10.9767/bcrec.11.3.575.354-362

    Article  CAS  Google Scholar 

  57. Shi B, Cheng W, Li Z (2015) Catalytic performance for phenol hydrogenation of nickel supported catalysts reduced by NaBH4. Shiyou Huagong Gaodeng Xuexiao Xuebao/J Petrochem Univ 28(4):1–6. https://doi.org/10.3969/j.issn.1006-396X.2015.04.001

    Article  CAS  Google Scholar 

  58. Cheng L, Dai Q, Li H, Wang X (2014) Highly selective hydrogenation of phenol and derivatives over Pd catalysts supported on SiO2 and γ-Al2O3 in aqueous media. Catal Commun 57:23–28. https://doi.org/10.1016/j.catcom.2014.07.006

    Article  CAS  Google Scholar 

  59. Huang C, Yang X, Yang H, Huang P, Song H, Liao S (2014) High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation. Appl Surf Sci 315(1):138–143. https://doi.org/10.1016/j.apsusc.2014.07.011

    Article  CAS  Google Scholar 

  60. Yang X, Yu X, Long L, Wang T, Ma L, Wu L, Bai Y, Li X, Liao S (2014) Pt nanoparticles entrapped in titanate nanotubes (TNT) for phenol hydrogenation: the confinement effect of TNT. Chem Commun 50(21):2794–2796. https://doi.org/10.1039/c3cc49331h

    Article  CAS  Google Scholar 

  61. Zhu T, Dong J, Niu L, Chen G, Ricardez-Sandoval L, Wen X, Bai G (2021) Highly dispersed Ni/NiCaAlOx nanocatalyst derived from ternary layered double hydroxides for phenol hydrogenation: spatial confinement effects and basicity of the support. Appl Clay Sci 203:106003. https://doi.org/10.1016/j.clay.2021.106003

    Article  CAS  Google Scholar 

  62. Dong J, Zhu T, Li H, Sun H, Wang Y, Niu L, WenBai XG (2019) Biotemplate-assisted syn of stable catalyst for phenol hydrogenation. Ind Eng Chem Res 58(32):14688–14694. https://doi.org/10.1021/Acs.Iecr.9b02548

    Article  CAS  Google Scholar 

  63. Wollenburg M, Heusler A, Bergander K, Glorius F (2020) Trans-selective and switchable arene hydrogenation of phenol derivatives. ACS Catal 10(19):11365–11370. https://doi.org/10.1021/acscatal.0c03423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nelson NC, Boote BW, Naik P, Rossini AJ, Smith EA, Slowing II (2017) Transfer hydrogenation over sodium-modified ceria: enrichment of redox sites active for alcohol dehydrogenation. J Catal 346:180–187. https://doi.org/10.1016/j.jcat.2016.12.018

    Article  CAS  Google Scholar 

  65. Zhang H, Han A, Okumura K, Zhong L, Li S, Jaenicke S, Chuah GK (2018) Selective hydrogenation of phenol to cyclohexanone by SiO 2-supported rhodium nanoparticles under mild conditions. J Catal 364:354–365. https://doi.org/10.1016/j.jcat.2018.06.002

    Article  CAS  Google Scholar 

  66. Zhang J, Jiang H, Liu Y, Chen R (2019) Tuning surface properties of N-doped carbon with TiO2 nano-islands for enhanced phenol hydrogenation to cyclohexanone. Appl Surf Sci 488:555–564. https://doi.org/10.1016/j.apsusc.2019.05.277

    Article  CAS  Google Scholar 

  67. He L, Niu Z, Miao R, Chen Q, Guan Q, Ning P (2019) Selective hydrogenation of phenol by the porous Carbon/ZrO 2 supported Ni–Co nanoparticles in subcritical water medium. J Clean Prod 215:375–381. https://doi.org/10.1016/j.jclepro.2019.01.077

    Article  CAS  Google Scholar 

  68. Zhang Y, Zhou J, Li K, Lv M (2019) Synergistic catalytic hydrogenation of phenol over hybrid nano-structure Pd catalyst. Mol Catal 478:110567. https://doi.org/10.1016/j.mcat.2019.110567

    Article  CAS  Google Scholar 

  69. Zhang Y, Zhou J, Si J (2017) Synergistic catalysis of nano-Pd and nano rare-earth oxide/AC: complex nanostructured catalysts fabricated by a photochemical route for selective hydrogenation of phenol. RSC Adv 7(86):54779–54788. https://doi.org/10.1039/c7ra09917g

    Article  CAS  Google Scholar 

  70. Resende KA, Hori CE, Noronha FB, Shi H, Gutierrez OY, Camaioni DM, Lercher JA (2017) Aqueous phase hydrogenation of phenol catalyzed by Pd and PdAg on ZrO2. Appl Catal A 548:128–135. https://doi.org/10.1016/j.apcata.2017.08.005

    Article  CAS  Google Scholar 

  71. Zhang F, Chen S, Li H, Zhang X-M, Yang H (2015) Pd nanoparticles embedded in the outershell of mesoporous core- shell catalyst for phenol hydrogenation in pure water. RSC Adv. https://doi.org/10.1039/x0xx00000x

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chen H, He Y, Pfefferle LD, Pu W, Wu Y, Qi S (2018) Phenol catalytic hydrogenation over palladium nanoparticles supported on metal-organic frameworks in the aqueous phase. ChemCatChem 10(12):2558–2570. https://doi.org/10.1002/cctc.201800211

    Article  CAS  Google Scholar 

  73. Guan Q, Wang B, Chai X, Liu J, Gu J, Ning P (2017) Comparison of Pd-UiO-66 and Pd-UiO-66-NH 2 catalysts performance for phenol hydrogenation in aqueous medium. Fuel 205:130–141. https://doi.org/10.1016/j.fuel.2017.05.029

    Article  CAS  Google Scholar 

  74. Ertas IE, Gulcan M, Bulut A, Yurderi M, Zahmakiran M (2016) Metal-organic framework (MIL-101) stabilized ruthenium nanoparticles: highly efficient catalytic material in the phenol hydrogenation. Microporous Mesoporous Mater 226:94–103. https://doi.org/10.1016/j.micromeso.2015.12.048

    Article  CAS  Google Scholar 

  75. Ertas IE, Gulcan M, Bulut A, Yurderi M, Zahmakiran M (2015) Rhodium nanoparticles stabilized by sulfonic acid functionalized metal-organic framework for the selective hydrogenation of phenol to cyclohexanone. J Mol Catal A 410:209–220. https://doi.org/10.1016/j.molcata.2015.09.025

    Article  CAS  Google Scholar 

  76. Zhang Z, Ding L, Gu J, Li Y, Xue N, Peng L, Zhu Y, Ding W (2017) 3D charged grid induces a high performance catalyst: ruthenium clusters enclosed in X-zeolite for hydrogenation of phenol to cyclohexanone. Catal Sci Technol 7(24):5953–5963. https://doi.org/10.1039/c7cy01852e

    Article  CAS  Google Scholar 

  77. Lin CJ, Huang SH, Lai NC, Yang CM (2015) Efficient room-temperature aqueous-phase hydrogenation of phenol to cyclohexanone catalyzed by Pd nanoparticles supported on mesoporous MMT-1 silica with unevenly distributed functionalities. ACS Catal 5(7):4121–4129. https://doi.org/10.1021/acscatal.5b00380

    Article  CAS  Google Scholar 

  78. Huang Y, Xia S, Ma P (2017) Effect of zeolite solid acids on the in situ hydrogenation of bio-derived phenol. Catal Commun 89:111–116. https://doi.org/10.1016/j.catcom.2016.11.002

    Article  CAS  Google Scholar 

  79. Singh N, Sanyal U, Ruehl G, Stoerzinger KA, Gutiérrez OY, Camaioni DM, Fulton JL, Lercher JA, Campbell CT (2020) Aqueous phase catalytic and electrocatalytic hydrogenation of phenol and benzaldehyde over platinum group metals. J Catal 382:372–384. https://doi.org/10.1016/j.jcat.2019.12.034

    Article  CAS  Google Scholar 

  80. Singh N, Lee MS, Akhade SA, Cheng G, Camaioni DM, Gutiérrez OY, Glezakou VA, Rousseau R, Lercher JA, Campbell CT (2019) Impact of pH on aqueous-phase phenol hydrogenation catalyzed by carbon-supported Pt and Rh. ACS Catal 9(2):1120–1128. https://doi.org/10.1021/acscatal.8b04039

    Article  CAS  Google Scholar 

  81. Singh N, Nguyen MT, Cantu DC, Mehdi BL, Browning ND, Fulton JL, Zheng J, Balasubramanian M, Gutiérrez OY, Glezakou VA, Rousseau R, Govind N, Camaioni DM, Campbell CT, Lercher JA (2018) Carbon-supported Pt during aqueous phenol hydrogenation with and without applied electrical potential: X-ray absorption and theoretical studies of structure and adsorbates. J Catal 368:8–19. https://doi.org/10.1016/j.jcat.2018.09.021

    Article  CAS  Google Scholar 

  82. Singh N, Song Y, Gutiérrez OY, Camaioni DM, Campbell CT, Lercher JA (2016) Electrocatalytic hydrogenation of phenol over platinum and rhodium: unexpected temperature effects resolved. ACS Catal 6(11):7466–7470. https://doi.org/10.1021/acscatal.6b02296

    Article  CAS  Google Scholar 

  83. Song Y, Gutiérrez OY, Herranz J, Lercher JA (2016) Aqueous phase electrocatalysis and thermal catalysis for the hydrogenation of phenol at mild conditions. Appl Catal B 182:236–246. https://doi.org/10.1016/j.apcatb.2015.09.027

    Article  CAS  Google Scholar 

  84. Sanyal U, Lopez-Ruiz J, Padmaperuma AB, Holladay J, Gutiérrez OY (2018) Electrocatalytic hydrogenation of oxygenated compounds in aqueous phase. Org Process Res Dev 22(12):1590–1598. https://doi.org/10.1021/acs.oprd.8b00236

    Article  CAS  Google Scholar 

  85. Chen H, Sun J (2021) Selective hydrogenation of phenol for cyclohexanone: a review. J Ind Eng Chem 94(92):78–91. https://doi.org/10.1016/j.jiec.2020.11.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the support of the Jazan University, Jazan, Saudi Arabia for this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ashraf Ali.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.A., Abutaleb, A. An Updated Comprehensive Literature Review of Phenol Hydrogenation Studies. Catal Lett 152, 1555–1581 (2022). https://doi.org/10.1007/s10562-021-03714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03714-5

Keywords

Navigation