Skip to main content
Log in

Influence of Copper and Silver on Catalytic Performance of MgO–SiO2 System for 1,3-Butadiene Production from Aqueous Ethanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The promoting effect of copper and silver on catalytic performance of MgO–SiO2 oxide systems for ethanol-to-butadiene (ETB) process has been studied with an aqueous ethanol as a feed. The relationship between acid–base characteristics and catalytic properties of (Cu, Ag)/MgO–SiO2 modified systems in ETB-process is discussed and the differences in the effects of copper and silver are shown based on the measurements of temperature-programmed surface reaction of ethanol. The modification of MgO–SiO2 with copper and silver contributes to a significant increase in 1,3-butadiene yield, as well as the yields of ethylene, butenes and residual intermediate product, acetaldehyde. This is caused by the formation of active sites for ethanol dehydrogenation and [Mg–O–Cu(Ag)] acid–base sites for the reactions of aldol-croton condensation of acetaldehyde with the formation of 1,3-butadiene and butenes, as well as ethanol dehydration.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. Moncada J, Gursel IV, Worrell E, Ramirez A (2018) Production of 1,3-butadiene and ε-caprolactam from C6 sugars techno-economic analysis. Biofuels, Bioprod Bioref 12:600–623

    Article  CAS  Google Scholar 

  2. Cabrera Camacho CE, Alonso-Fariñas B, Villanueva Perales AL et al (2020) Techno-economic and life-cycle assessment of one-step production of 1,3-butadiene from bioethanol using reaction data under industrial operating conditions. ACS Sustain Chem Eng 8:10201–10211. https://doi.org/10.1021/acssuschemeng.0c02678

    Article  CAS  Google Scholar 

  3. Farzad S, Mandegari MA, Görgens JF (2017) Integrated techno-economic and environmental analysis of butadiene production from biomass. Bioresour Technol 239:37–48. https://doi.org/10.1016/j.biortech.2017.04.130

    Article  CAS  PubMed  Google Scholar 

  4. Shylesh S, Gokhale AA, Scown CD et al (2016) From sugars to wheels: the conversion of ethanol to 1,3-butadiene over metal-promoted magnesia-silicate catalysts. Chemsuschem 9:1462–1472. https://doi.org/10.1002/cssc.201600195

    Article  CAS  PubMed  Google Scholar 

  5. Dastillung R, Fischer B, Jacquin M, Huyghe R (2017) Method for the production of butadiene from ethanol in one low-water- and low-energy-consumption reaction step. US 20,170,267,604 A1 17

  6. Cabello González GM, Concepciónb P, Villanueva Peralesa AL et al (2019) Ethanol conversion into 1,3-butadiene over a mixed Hf–Zn catalyst: effect of reaction conditions and water content in ethanol. Fuel Process Technol 193:263–272. https://doi.org/10.1016/j.apcata.2018.11.010

    Article  CAS  Google Scholar 

  7. Larina OV, Remezovskyi IM, Kyriienko PI et al (2019) 1,3-Butadiene production from ethanol–water mixtures over Zn–La–Zr–Si oxide catalyst. React Kinet Mech Catal 127:903–915. https://doi.org/10.1007/s11144-019-01618-5

    Article  CAS  Google Scholar 

  8. Kyriienko PI, Larina OV, Dzwigaj S et al (2019) Effect of the composition of ethanol—water mixtures on the properties of oxide (Zn–Zr–Si) and zeolitic (Ta/SiBEA) catalysts in the production of 1,3-butadiene. Theor Exp Chem 55:241–247. https://doi.org/10.1007/s11237-019-09618-1

    Article  CAS  Google Scholar 

  9. Cai D, Zhu Q, Chen C et al (2018) Fermentation–pervaporation–catalysis integration process for bio-butadiene production using sweet sorghum juice as feedstock. J Taiwan Inst Chem Eng 82:137–143. https://doi.org/10.1016/j.jtice.2017.11.002

    Article  CAS  Google Scholar 

  10. Pomalaza G, Arango P, Capron M, Dumeignil F (2020) Ethanol-to-butadiene: the reaction and its catalyst. Catal Sci Technol 10:4860–4911. https://doi.org/10.1039/D0CY00784F

    Article  CAS  Google Scholar 

  11. Kyriienko PI, Larina OV, Soloviev SO, Orlyk SM (2020) Catalytic conversion of ethanol into 1,3-butadiene: achievements and prospects: a Review. Theor Exp Chem 56:213–242. https://doi.org/10.1007/s11237-020-09654-2

    Article  CAS  Google Scholar 

  12. Cabello González GM, Villanueva Perales AL, Campoy M et al (2021) Kinetic modelling of the one-step conversion of aqueous ethanol into 1,3-butadiene over a mixed hemimorphite-HfO2/SiO2 catalyst. Fuel Process Technol 216:106767. https://doi.org/10.1016/j.fuproc.2021.106767

    Article  CAS  Google Scholar 

  13. Velasquez Ochoa J, Bandinelli C, Vozniuk O et al (2016) An analysis of the chemical, physical and reactivity features of MgO–SiO2 catalysts for butadiene synthesis with the Lebedev process. Green Chem 18:1653–1663. https://doi.org/10.1039/C5GC02194D

    Article  CAS  Google Scholar 

  14. Zhu Q, Wang B, Tan T (2016) Conversion of ethanol and acetaldehyde to butadiene over MgO–SiO2 catalysts: effect of reaction parameters and interaction between MgO and SiO2 on catalytic performance. ACS Sustain Chem Eng 5:722–733. https://doi.org/10.1021/acssuschemeng.6b02060

    Article  CAS  Google Scholar 

  15. Kyriienko PI, Larina OV, Balakin DY et al (2021) 1,3-Butadiene production from aqueous ethanol over ZnO/MgO–SiO2 catalysts: insight into H2O effect on catalytic performance. Appl Catal A Gen 616:118081

    Article  CAS  Google Scholar 

  16. Larina OV, Kyriienko PI, Balakin DY et al (2019) The effect of ZnO on acid-base properties and catalytic performance of ZnO/ZrO2–SiO2 catalysts in 1,3-butadiene production from ethanol-water mixture. Catal Sci Technol 9:3964–3978. https://doi.org/10.1039/C9CY00991D

    Article  CAS  Google Scholar 

  17. Zhang M, Tan X, Zhang T et al (2018) The deactivation of ZnO doped ZrO2–SiO2 catalyst in the conversion of ethanol/acetaldehyde to 1,3-butadiene. RSC Adv 8:34069–34077. https://doi.org/10.1039/C8RA06757K

    Article  CAS  Google Scholar 

  18. Larina OV, Shcherban ND, Kyriienko PI et al (2020) Design of effective catalysts based on ZnLaZrSi oxide systems for obtaining 1,3-butadiene from aqueous ethanol. ACS Sustain Chem Eng 8:16600–16611. https://doi.org/10.1021/acssuschemeng.0c05925

    Article  CAS  Google Scholar 

  19. Kyriienko PI, Larina OV, Scherban ND et al (2020) Catalytic properties of ZnLaZrSi-oxide systems in the process of obtaining 1,3-butadiene from ethanol–aqueous mixtures. Theor Exp Chem 56:329–337. https://doi.org/10.1007/s11237-020-09662-2

    Article  CAS  Google Scholar 

  20. Makshina EV, Janssens W, Sels BF, Jacobs PA (2012) Catalytic study of the conversion of ethanol into 1,3-butadiene. Catal Today 198:338–344. https://doi.org/10.1016/j.cattod.2012.05.031

    Article  CAS  Google Scholar 

  21. Janssens W, Makshina EV, Vanelderen P et al (2015) Ternary Ag/MgO–SiO2 catalysts for the conversion of ethanol into butadiene. Chemsuschem 8:994–1008. https://doi.org/10.1002/cssc.201500081

    Article  CAS  PubMed  Google Scholar 

  22. Angelici C, Velthoen MEZ, Weckhuysen BM, Bruijnincx PCA (2014) Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO2–MgO catalysts. Chemsuschem. https://doi.org/10.1002/cssc.201402361

    Article  PubMed  Google Scholar 

  23. Tripathi A, Faungnawakij K, Laobuthee A et al (2016) Catalytic activity of bimetallic Cu–Ag/MgO–SiO2 toward the conversion of ethanol to 1,3-butadiene. Int J Chem React Eng 14:945–954. https://doi.org/10.1515/ijcre-2015-0164

    Article  CAS  Google Scholar 

  24. Angelici C, Meirer F, Van Der Eerden AMJ et al (2015) Ex situ and operando studies on the role of Copper in Cu-promoted SiO2–MgO catalysts for the Lebedev ethanol-to-butadiene process. ACS Catal 5:6005–6015. https://doi.org/10.1021/acscatal.5b00755

    Article  CAS  Google Scholar 

  25. Gun’ko VM, Zarko VI, Chuikov BA, et al (1998) Temperature-programmed desorption of water from fumed silica, titania, silica/titania, and silica/alumina. Int J Mass Spectrom Ion Process 172:161–179

    Article  Google Scholar 

  26. Espinós JP, Morales J, Barranco A et al (2002) Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J Phys Chem B 106:6921–6929. https://doi.org/10.1021/jp014618m

    Article  CAS  Google Scholar 

  27. Armelao L, Barreca D, Bottaro G (2005) Study of Ag/SiO2 nanosystems by XPS. Surf Sci Spectra 10:170–181

    Article  Google Scholar 

  28. Dzwigaj S, Janas J, Gurgul J et al (2009) Do Cu(II) ions need Al atoms in their environment to make CuSiBEA active in the SCR of NO by ethanol or propane? A spectroscopy and catalysis study. Appl Catal B Environ 85:131–138. https://doi.org/10.1016/j.apcatb.2008.07.003

    Article  CAS  Google Scholar 

  29. Texter J, Gonsiorowski T, Kellerman R (1981) 5s←4d transition of trigonal Ag+ in zeolite. Phys Rev B 23:4407–4418. https://doi.org/10.1103/PhysRevB.23.4407

    Article  CAS  Google Scholar 

  30. Kyriienko PI, Larina OV, Soloviev SO et al (2017) Ethanol conversion into 1,3-butadiene by the Lebedev method over MTaSiBEA zeolites (M = Ag, Cu, Zn). ACS Sustain Chem Eng 5:2075–2083. https://doi.org/10.1021/acssuschemeng.6b01728

    Article  CAS  Google Scholar 

  31. Dzwigaj S, Millot Y, Krafft JM et al (2013) Incorporation of silver atoms into the vacant t-atom sites of the framework of SiBEA zeolite as mononuclear Ag(I) Evidenced by XRD, FTIR, NMR, DR UV–vis, XPS, and TPR. J Phys Chem C 117:12552–12559

    Article  CAS  Google Scholar 

  32. Janssens TVW, Falsig H, Lundegaard LF et al (2015) A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia. ACS Catal 5:2832–2845. https://doi.org/10.1021/cs501673g

    Article  CAS  Google Scholar 

  33. Sayah E, Brouri D, Wu Y et al (2011) A TEM and UV–visible study of silver reduction by ethanol in Ag-alumina catalysts. Appl Catal A Gen 406:94–101. https://doi.org/10.1016/j.apcata.2011.08.016

    Article  CAS  Google Scholar 

  34. Popovych N, Kyriienko P, Soloviev S et al (2015) Catalytic properties of AgAlBEA and AgSiBEA zeolites in H2-promoted selective reduction of NO with ethanol. Microporous Mesoporous Mater 203:163–169

    Article  CAS  Google Scholar 

  35. Angelici C, Velthoen MEZ, Weckhuysen BM, Bruijnincx PCA (2015) Influence of acid–base properties on the Lebedev ethanol-to-butadiene process catalyzed by SiO2–MgO materials. Catal Sci Technol 5:2869–2879. https://doi.org/10.1039/C5CY00200A

    Article  CAS  Google Scholar 

  36. Taifan WE, Baltrusaitis J (2018) In-situ spectroscopic insights on the molecular structure of the MgO/SiO2 catalytic active site during ethanol conversion to 1,3-butadiene. J Phys Chem C 122:20894–20906. https://doi.org/10.1021/acs.jpcc.8b06767

    Article  CAS  Google Scholar 

  37. Dong X, Liu C, Fan D et al (2019) Insight into the effect of promoters (M = Cu, Ag, Zn, Zr) on aldol condensation reaction based on MgO surface in the process of ethanol to 1, 3-butadiene: a comparative DFT study. Appl Surf Sci 481:576–587. https://doi.org/10.1016/j.apsusc.2019.03.108

    Article  CAS  Google Scholar 

  38. Sushkevich VL, Ivanova II, Taarning E (2013) Mechanistic study of ethanol dehydrogenation over silica-supported silver. ChemCatChem 5:2367–2373. https://doi.org/10.1002/cctc.201300033

    Article  CAS  Google Scholar 

  39. Kurmach MM, Larina OV, Kyriienko PI et al (2018) Hierarchical Zr-MTW zeolites doped with copper as catalysts of ethanol conversion into 1,3-butadiene. ChemistrySelect 3:8539–8546. https://doi.org/10.1002/slct.201801971

    Article  CAS  Google Scholar 

  40. Tu P, Xue B, Tong Y et al (2020) Effect of doping metal oxide in ZnO/SBA-15 on its acid-base properties and performance in ethanol-to-butadiene process. ChemistrySelect 5:7258–7266

    Article  CAS  Google Scholar 

  41. Dagle VL, Winkelman AD, Jaegers NR et al (2020) Single-step conversion of ethanol to n-butene over Ag–ZrO2/SiO2Catalysts. ACS Catal 10:10602–10613. https://doi.org/10.1021/acscatal.0c02235

    Article  CAS  Google Scholar 

  42. Young ZD, Davis RJ (2018) Hydrogen transfer reactions relevant to Guerbet coupling of alcohols over hydroxyapatite and magnesium oxide catalysts. Catal Sci Technol 8:1722–1729. https://doi.org/10.1039/c7cy01393k

    Article  CAS  Google Scholar 

  43. He R, Men Y, Huang X et al (2018) Interaction of ethanol with MgO–SiO2 Catalysts studied by TPD techniques. Chem Lett 47:1097–1100. https://doi.org/10.1246/cl.180474

    Article  CAS  Google Scholar 

  44. Yan T, Dai W, Wu G et al (2018) Mechanistic insights into one-step catalytic conversion of ethanol to butadiene over bifunctional Zn–Y/beta zeolite. ACS Catal 8:2760–2773. https://doi.org/10.1021/acscatal.8b00014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the programs of National Academy of Sciences of Ukraine KPKVK 6541230 “Support for the development of priority areas of scientific research” (0120U101212), KPKVK 6541030 “New functional substances and materials of chemical production” (0119U101562) and “Influence of structural dimensional and acid-base characteristics of Cu (Zn, Ag)/La (Zr)–SiO2, CuNi/Mg (Ce)–Al2O3 catalysts on their functional properties in the conversion of bioethanol into valuable products” (0119U102378). P.I. Kyriienko and D.Yu. Balakin thank CERIC-ERIC Consortium for support in execution of the researches by XPS at Charles University (Proposal 20172060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo I. Kyriienko.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyriienko, P.I., Larina, O.V., Balakin, D.Y. et al. Influence of Copper and Silver on Catalytic Performance of MgO–SiO2 System for 1,3-Butadiene Production from Aqueous Ethanol. Catal Lett 152, 921–930 (2022). https://doi.org/10.1007/s10562-021-03704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03704-7

Keywords

Navigation